

Hattah North SDL

Geotechnical Report 10 June 2016

Hattah North SDL

Project no:	IS129400
Document title:	Geotechnical Report
Document No.:	IS129400-GE-RP-0001
Revision:	0
Date:	10 June 2016
Client name:	Goulburn-Murray Water
Project manager:	Kelly Maslin
Author:	Ross Kristinof
File name:	J:\IE\Projects\03_Southern\IS129400\01 Design\Final Deliverables June 2016\IS129400_Hattah North Detailed Design_Geotechnical Report_8-06-2016.docx

Jacobs

Floor 11, 452 Flinders Street Melbourne VIC 3000 PO Box 312, Flinders Lane Melbourne VIC 8009 Australia T +61 3 8668 3000 F +61 3 8668 3001 www.jacobs.com

© Copyright 2015 Jacobs. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
А	10/12/2015	Draft Report – 50% Milestone	RK	KM	KM
В	16/2/2016	Draft Report – 85% milestone	RK	KM	КМ
0	10/06/2016	Final Report	RK	KM	KM

Contents

Execu	tive Summary	1
1.	Introduction	3
2.	Site Description	4
3.	Geological Setting	6
3.1	Regional Geology	6
3.2	Previous Studies	6
3.3	Seismic Hazard	7
4.	Subsurface Conditions	8
4.1	General	8
4.2	Field Investigation	8
4.3	K10 Regulator Site	9
4.4	Kulkyne Borrow Area	.10
4.5	Groundwater	.10
5.	Laboratory Testing	.12
5.1	General	.12
5.2	Moisture Content and Atterberg Limits	.12
5.3	Dispersivity	.12
6.	Summary of Geotechnical Design Parameters	.13
7.	Discussion and Recommendations	.14
7.1	K10 Regulator Site - Seepage	.14
7.2	Geometry of levee and extent of cut-offs	.15
7.3	Fill selection and placement	.15
7.3.1	K10 Regulator	.15
7.3.2	Bitterang Levee	.16
7.4	Filter zones	.16
7.5	Bearing Capacity	.16
8.	Summary and Conclusions	.17

Appendix A. Interpretative Long Section Appendix B. CPT and test pit logs Appendix C. Laboratory test certificates

Executive Summary

Jacobs have been engaged by Goulburn-Murray Water (GMW) to undertake detailed design for proposed environmental regulator structures in Murray-Kulkyne National Park. The Hattah Lakes wetland system is located within the Hattah-Kulkyne National Park, about 100 km south-east of Mildura. The system comprises approximately 20 lakes which receive water from the Murray River, via Chalka and Cantala Creek. Geotechnical investigations were undertaken at the location of the proposed K10 Regulator on the River Track, and a nearby borrow area which is proposed to supply earth fill for the project. The K10 regulator will control environmental flows within Chalka and Cantala Creeks. These works form part of the northern extension to the Hattah Lakes Water infrastructure project.

A geotechnical Investigation was undertaken at Chalka Creek at the proposed K10 regulator site, and at the nearby Kulkyne borrow site proposed to be the source of fill material for the structure, and nearby associated levees.

Ground conditions at the site were characterised by CPT testing, and generally comprise stiff desiccated clays and silty sands overlying fine to medium grained, relatively clean sand.

Geotechnical design parameters have been provided in this report for the site, along with a review of conditions at the borrow site. Borrow material is found to be moderately dispersive but otherwise suitable for embankment construction, assuming it is adequately moisture conditioned. The Kulkyne borrow area is also expected to provide a suitable source of sand for filter zones. Borrow material at the existing Bitterang borrow site is also considered acceptable for use in the augmentation of the adjacent Bitterang levees.

The geometry proposed at concept design stage is considered to be acceptable from a seepage point of view. Sheet pile cut-offs are recommended to extend to 20m either side of the structure with a reworked clay cut-off used beyond the sheet-pile.

Important note about your report

It is important that the user of this report be aware of the limitations associated with the data presented. Guidance on these limitations is presented in this section.

The information presented in this report is considered appropriate to assist in the detailed design for the proposed regulator structure at Hattah Lakes. It should be noted that the information may not be appropriate for other uses.

The data presented in this report is based on the site specific data available. The information in this report is therefore based on limited data, and should not be extrapolated to any location or depth which is not specifically addressed in the report. All reports and conclusions that deal with sub-surface conditions are based on interpretation and judgement and as a result have uncertainty attached to them. You should be aware that this report contains interpretations and conclusions which are uncertain, due to the nature of the available information. No study can completely eliminate risk, and even a rigorous assessment and/or sampling program may not detect all problem areas within a site.

The content of this report is based solely upon the Jacobs agreed scope of work for technical services to GMW. Jacobs has not performed any additional work not specifically set out or required under the scope of work, and is therefore not liable for the existence of any condition the discovery of which would have required the performance of such additional work.

Unless specifically so stated in this report, Jacobs has not attempted to independently verify the accuracy or completeness of any information received from the Client or third parties during the performance of the Services, and cannot therefore be liable for any inaccuracies or incompleteness in any such information.

The Services in this project have been performed by Jacobs with the skill and care ordinarily exercised by a reasonable geotechnical specialist, in particular, taking into account the limits of the Scope of Work requested by the Client, the timescale involved and the resources, including financial and manpower resources, agreed between Jacobs and the Client.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

1. Introduction

Jacobs have been engaged by Goulburn-Murray Water (GMW) to undertake detailed design for proposed environmental regulator structures in Murray-Kulkyne National Park. The Hattah Lakes wetland system is located within the Hattah-Kulkyne National Park, about 100 km south-east of Mildura. The system comprises approximately 20 lakes which receive water from the Murray River, via Chalka and Cantala Creek. Geotechnical investigations were undertaken at the location of the proposed K10 Regulator on the River Track, and a nearby borrow area which is proposed to supply earth fill for the project. The K10 regulator will control environmental flows within Chalka and Cantala Creeks. These works form part of the northern extension to the Hattah Lakes Water infrastructure project.

Jacobs undertook a field investigation on November 8 and 9th, 2015 which included the excavation of 11 test pits at the Kulkyne borrow site and 5 Cone Penetration Tests (CPTu) at the K10 Regulator site.

This investigation supplemented previous works undertaken at Advanced Concept stage by GHD. In addition, previous works completed by GHD at Bitterang Levee have been reviewed to inform the augmentation of the existing structure at that site. The purpose of this report is to document the findings of the geotechnical investigation and to summarise geotechnical advice associated with the proposed regulator structure.

2. Site Description

The location of the K10 Regulator site and borrow area can be seen in the site map in **Figure 1**. The boundaries of Chalka Creek across which the K10 Regulator will be constructed were evident at the time of the investigation, but the creek itself was dry. The Kulkyne borrow area is located on private property south of the proposed regulator site. The Bitterang levee is located further south.

The site is located within an extensive alluvial plane associated with the Hattah lakes system and nearby Murray River. The terrain is gently undulating with low lying areas generally comprising alluvial deposits, and higher elevations comprising sand dunes which are stabilised by vegetation growth. Vegetation comprises grasses, small shrubs and trees. At the time of the investigation, the terrain was dry and no water was present in the creek. The nearest standing water was several kilometres away. **Photo 1** and **Photo 2** illustrate the conditions at the site.

Photo 1: K10 regulator location

Photo 2: Borrow area

Lake Bitterang is located further south, and is fed predominantly by flows from Chalka Creek North. The Bitterang Levee is located north of Lake Bitterang, and is used to control inundation to the surrounding area. The levee is to be widened, and culvert-style regulators added. Extensive investigations have been previously undertaken at Bitterang (GHD, 2009), and these form the basis for assessments discussed in this report.

3. Geological Setting

3.1 Regional Geology

The geology of the project area comprises Aeolian and fluvially deposited sediment associated with the Murray River and its billabongs and tributaries. The Geological Survey of Victoria, Mildura Map Sheet (1:250 000 scale) describes the surface geology within the site. An extract from the Mildura Map sheet is shown (not to scale) in **Figure 3.1** below, and shows the approximate extent of the site.

The area is overlain by various Quarternary aged deposits, namely:

- · Coonambidgal Formation (Qc): Fluvial, lacustrine deposts, clay, sand and sandy clays
- Lowan Formation (QI): Aeolian: dune sand, fine to medium grained
- Blanchetown Clay (Qb): Fluvial: clayey sand, sandstone and sand.

The findings of the field investigation are consistent with the expected geology.

3.2 **Previous Studies**

Previous geotechnical investigations were conducted by GHD to assess foundation conditions at the proposed sites. At the site of the K10 regulator, the GHD report dated February 2015 details the site walkover and geotechnical investigation which included the drilling of 2 boreholes to a depth of approximately 15m at the K10 Regulator structure, 9 shallow solid flight augers (up to 3.95m deep) at selected locations spread across the proposed regulator, causeway and embankment locations, 4 CPT tests at four locations along the alignment of the K10 regulator, and DCP and SPT testing as part of the drilling and excavation.

The report interprets the results of the investigation and summarises the ground profile in the area. The conditions at the K10 Regulator site generally comprise:

- **Fill** at surface, generally consisting of gravelly material (noting that boreholes were drilled through the existing unsealed roadway); overlying
- **Medium to high plasticity clay** with interbedded minor sand and fine gravel component, of a stiff to hard consistency and dry to moist condition to a depth of approximately 3 to 4m; overlying
- **Loose to medium dense sand** within traces of silt and gravel to a depth of between 11.6 and 13m; overlying
- **Stiff clay and clay with sand** to depths of greater than 20m below ground level.

The report provides recommendations of parameters for use in design, as well as design recommendations for foundation options and sheet pile wall cut-off in regards to the seepage underneath the regulator. The report also provides recommendations on settlements and commentary around the characteristics of the borrow material, noting that it is likely to be dispersive. The recommendations made by GHD have been reviewed and taken into consideration in this report.

At Bitterang, investigation works undertaken by GHD in April 2009 comprised 8 test pits along the extent of the levee. The report identifies sandy clay and clayey sands to a depth of up to 4.2m below natural ground level. Works undertaken in 2010 by GHD describe the borrow material at the site (which was ultimately used in the levee's construction) as comprising similar material to the founding strata of the levee itself.

3.3 Seismic Hazard

Reference to Australian Standard AS1170.4 indicates that the site is located in an area of low seismicity, with a site hazard factor (Z) of 0.03, and a site classification of C_e . Seismicity is not expected to govern design.

4. Subsurface Conditions

4.1 General

Subsurface conditions at the K10 regulator site and nearby Kulkyne borrow are described in Sections 4.2 to 4.4, below. Subsurface conditions at Bitterang are described in Section 3, based on reports by GHD.

4.2 Field Investigation

The geotechnical investigation was carried out on the 8th and 9th of November, 2015. Eleven (11) test pits were excavated at the borrow site. Five (5) CPTu tests were performed at the K10 Regulator Site. A sample was obtained at CPTu location J1 at a depth of 4 to 4.5m using a Vertek sampler. **Table 4.1** provides a summary of the test pits and CPTs conducted during the field investigation. An interpretative long section through the K10 regulator site is provided in **Appendix A** and includes relevant CPT data from both the recent Jacobs investigation and the previous GHD investigation. A site plan showing the location of test pits excavated at the borrow area is included in **Figure 2**. **Figure 2** has been annotated with the approximate thicknesses of suitable borrow material at each test location. Test pit and CPTu logs are provided in **Appendix B**. Further details for each location are provided in **Section 4.2** and **Section 4.3**.

Test locations have been assessed using a hand-held GPS device at the time of testing, with nominal accuracy of +/- 10m. Surface elevations have been estimated from existing survey data. No surface elevation data is available at the borrow site.

Hole ID	Easting	Northing	Inferred Surface RL (mAHD)	Termination depth (m bgl)
		K10 Regulator Site		
J-CPT1	630784	39.9	15.4	
J-CPT2	630790	6170257	40.15	8.7
J-CPT3	630798	6170241	40.5	20.4
J-CPT4	630791	6170286	40.7	17.35
J-CPT5	630777	6170308	42.1	21.35
		Borrow Area		
J-TP1	632744	6168968		2.9
J-TP2	632782	6168971		3.0
J-TP3	632836	6168988		3.0
J-TP4	632846	6168904		3.0
J-TP5	632909	6169054		2.9
J-TP6	632809	6169039	N/A	3.2
J-TP7	632725	6169025		3.0
J-TP8	632669	6168849		3.2
JTP9	632825	6168680		3.15
J-TP10	632629	6168951		3.2
J-TP11	632313		1.3	

Table 4.1 : Summary of test pits and CPTs conducted during the geotechnical investigation

4.3 K10 Regulator Site

Ground conditions at the K10 regulator site are illustrated in the long section provided in **Appendix A**. In general, ground conditions comprise:

Unit 1: Dry, very dense **Clayey Sand and Sandy Clay** of low to intermediate plasticity at the surface, typically fissured and with negligible top soil thickness; overlying

Unit 2: Very stiff and dry Clay with interbedded dense sand of low plasticity; overlying

Unit 3: Medium Dense to Dense Sand, fine to medium grained, sub-rounded to sub-angular; overlying

Unit 4: Stiff to Very Stiff Silty Clay.

The depths of each unit type are summarised in **Table 4.2** below. A Vertek sample of the Unit 3 sand material was obtained at CPT J-1, in the middle of the creek-bed, at a depth of approximately 4 to 4.5m below ground surface level. A photograph of this sample is provided in **Figure 4.2**, giving an indication of its composition. A dissipation test in this material was attempted by could not be undertaken due to the rapid draining of pore water pressure around the CPT cone, which suggests that this layer is of very high permeability (and can therefore be assumed to be free-draining for the purposes of geotechnical strength and stiffness assessments). A subsequent dissipation test was attempted at 7.0m depth in Unit 4. This test ran for approximately 2 hours with less than 25% excess pore water pressure dissipation during this time, which suggests a very low permeability of this material. The permeability observations are consistent with the inferred sandy and clayey nature of these two units respectively.

Unit	Material type	Depths Encountered in each CPT (mbgl)										
		J1	J2	J3	J4	J5						
1	Clayey Sand / Sandy Clay	0 to 1	0 to 0.5	0 to 1	0 to 0.5	0 to 1.5						
2a	Very stiff Sand/very stiff Clayey Sand	1 to 2	0.5 to 2	1 to 2	0.5 to 1.5	1.5 to 2.5						
2b	Very stiff clay to stiff silty clay	2 to 3	2 to 3	2 to 3	1.5 to 3	2.5 to 3						
3	Medium dense to dense sand	3 to 9	3 to 10	3 to 10	3 to 10	3 to 12						
4	Stiff to very stiff clay	9 to 14	N/A	10 to 20	10 to 15	12 to 17						

Table 4.2 : Summary of units and depths encountered - K10 Regulator site

N/A - not applicable - unit not encountered

Photo3: Vertek sample taken from CPT J1, 4.0 to 4.5m bgl

4.4 Kulkyne Borrow Area

The borrow area, directly south of the K10 regulator site, has previously been used to supply fill material for the construction of nearby structures. Test pits were excavated immediately north and to the west of the footprint of the previously disturbed borrow. The ground conditions at the site generally comprised:

Unit 1: Dark brown and dark grey Silty Clay of low to intermediate plasticity; overlying

Unit 2: Light brown and orange-brown Silty Clay of low plasticity; overlying

Unit 3: Pale brown Sand, fine grained, with some silt.

The depths at which these units were encountered are summarised in **Table 4.3**. A marker layer of weakly cemented sand, up to 200mm thick, exists at the interface between Unit 2 and Unit 3. This band was generally difficult to excavate through.

No groundwater was encountered in any of the excavated test pits.

Test Pit J11 was excavated within the footprint of the previously disturbed and backfilled borrow area, to ascertain the material which has been placed there. The **FILL** material in this area generally comprised a mix of fine grained, pale grey and light brown sands, and low plasticity silts and clays, and is generally considered to be unsuitable for reuse in levee or regulator construction. It is likely this material is waste-spoil excavated from river banks for other nearby regulators built using borrow material from Kulkyne.

Table 4.3 : Summary of Units and depths encountered – Borrow area

Unit	Depths encountered (mbgI)
1	0 to 1.0
2	0.5 to 3.2
3	Below 2.2 m

4.5 Groundwater

At the K10 regulator site, groundwater levels were inferred from observed u_2 pore pressure readings taken from the CPT tests. These were then validated by hand measurement of the water level in the CPT hole at the completion of the test. Ground water levels were observed to be approximately **5m** below natural ground level. Owing to the desiccated and fissured nature of the surface clays, it is reasonable to assume that when the area

is in flood, the groundwater table will be hydraulically connected to surface water, and therefore effectively at ground surface level. A high degree of variability in the groundwater table during the design life of the regulator can therefore be assumed.

No groundwater was encountered in any of the test pits at the borrow site.

5. Laboratory Testing

5.1 General

Samples from the Kulkyne borrow area investigation were consigned for laboratory testing by Civil Geotechnical Services (CGS) based in Croydon, Victoria. **Table 5.1** summarises the results of the laboratory testing, and further discussion is provided in subsequent sections below. Test certificates are provided in **Appendix C**.

Test Pit	Depth	Natural Moisture Content	Liq. Limit	PI Limit	PI	Linear Shrinkage	Clay	Silt	Emerson Class	Std Max Dry Density	Opt. Moisture Content
	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(-)	(t/m ³)	(%)
J-TP1	1.6	11.3	38	19	19	9	26	62.5	2		17.0
J-TP1	2.9	4.9	24	21	3	1	4.5	36.7	3		
JTP-2	2.9	5.9	25	22	3	1				1.54	
JTP-3	1.2	16.9	55	21	34	15	42.9	42.1	3	1.68	
J-TP4	1.2	19	46	21	25	12	37.8	53.9			20
JTP-6	3.2	14.4	35	21	14	7.5	20.3	56	2	1.55	
JTP-8	0.6-1.6	11.7	35	18	17	9					15.5

Table 5.1 : Summary of Laboratory Test Results

5.2 Moisture Content and Atterberg Limits

Figure 3 presents a plot of moisture content and Atterberg Limit versus depth at the borrow site, and **Figure 4** presents a Casagrande Chart showing the plasticity of the data. Figure 3 also shows the measured optimum moisture content available for the site, relative to the natural moisture content. It can be seen from these figures that the available soils in Unit 2 at the site are generally of low to medium plasticity, and are within the recommended Plasticity Index and Liquid Limit bounds recommended by Fell (2005). Figure 3 does however suggest that the soil in its natural state is significantly dry of optimum, by up to 5%. This is consistent with GHD's earlier findings (GHD, 2014; GHD, 2010).

5.3 Dispersivity

Emerson class dispersivity testing indicates a classification of 2 or 3 for the borrow soil in distilled water. Unfortunately it was not possible to test in river water given that Chalka creek was dry at the time of sampling. These test results suggest the material is moderately dispersive, but may be used as fill material provided it is carefully compacted and treated. The relatively high silt contents of the material validate the Emerson Class values obtained.

6. Summary of Geotechnical Design Parameters

Table 6.1 summarises inferred geotechnical design parameters for the natural, in situ material at the K10 regulator site. These parameters are based on interpretation of the CPT results using the methods described by Robertson et al (2012).

Unit	Bulk unit weight (kN/m³)	Effective cohesion, c' (kPa)	Effective angle of internal friction, f' (deg)	Undrained shear strength, s _u (kPa)	Effective modulus of elasticity, E' (kPa)	
1	18	0	37	N/A	11,200	
2a	17	0	N/A	17,700		
2b 17		0	33	N/A	28,900	
3 18		0	40	N/A	54,500	
4	17	0	N/A	70	34,400	

Table 6.1 : Summary of preliminary design parameters

7. Discussion and Recommendations

7.1 K10 Regulator Site - Seepage

The surficial clays and silty sands (Units 1, 2a, 2b) at the site are expected to be permeable due to the presence of desiccation cracking and gilgai features at the surface. These surficial clays will tend to percolate water downwards when flooded, and will soften slightly on wetting due to swelling of the clay. This softened strength has been taken into account in the design parameters nominated in **Section 6**. Groundwater levels at the time of investigation were approximately 5m below ground level. Given the permeability of the ground, it is reasonable to assume that the groundwater will be hydraulically connected to the nearby river and any surface water in Chalka Creek. For design purposes, groundwater at surface level should be assumed.

An assessment of seepage beneath the regulator has been made using the Weighted Creep Method (Lane, 1935). Results are summarised in **Table 7.1**. The assessment assumes a central sheet pile cut-off extending 4.5m below the base of the structure, and an upstream and downstream sheet pile cut-off to 3.0m below structure invert.

Analysis Case	Description	Critical Head assumed (m)	Weighted Creep Ratio (c_w)		
1	Flow around central cutoff only	2.72	7.7		
2	Flow around all three cutoffs (Centre cutoff at 4.5m depth, u/s and d/s cut offs at 3m depth	2.72	12.2		
3	Minimum head height for no cutoff	0.75	8.5		
4	Intermediate height embankment – 1.5m	1.5	9.9		

Table 7.1 : Lane's Weighted Creep - summary of preliminary seepage assessment

The values presented in **Table 7.1** may be compared with a critical creep ratio (c_w) of 8.5 recommended by Lane for silty sands and clays, and a value of 6.0 for medium to coarse sands. The subgrade profile at the site comprises interbedded sands and clays near the contact with the structure, and therefore the actual critical c_w value is likely to be in between these two values. The results suggest that if only a central cut-off is provided, the creep ratios would be marginal. In this scenario, a deeper cut off may need to be provided OR the embankment should be widened.

The analysis also suggests that no sheet pile cut-off needs be provided when the retained water height on the upstream side of the K10 regulator is less than **0.75m**. This critical depth should be considered when assessing the lateral extent of sheet piles at the site; for piping control purposes, the sheet piles will not be required when the upstream ponded water height is below this threshold depth.

It is noted that CPT J1 refused at a relatively shallow depth of 8.7m below ground level, within Unit 3. Some earlier GHD CPTs also refused at relatively shallow depths, within a few metres of the natural ground surface. It is likely that refusal occurred in the cemented sand material identified at the borrow site, which occurred within 3m of the surface. As a general rule of thumb, any ground which causes refusal of the CPT cone is likely to result in difficult driving of sheet piles, and therefore there is a risk that isolated sheets may refuse at a shallower depth than design.

Shallow refusal of sheetpiles would need to be assessed during the construction phase on a case by case basis, as it will depend on the quantity of sheets and the extent to which they have refused prematurely.

7.2 Geometry of levee and extent of cut-offs

The geometry and cut-off depths proposed in the concept design appear are considered to be reasonable to provide adequate stability and seepage resistance for the proposed structure. Given the strength of the underlying soil, the proposed 3H:1V batters are considered by inspection to be stable for the global slope stability of the structure and levees. Lane's method assumes that horizontal flow paths have 1/3 of the effectiveness of vertical flow paths in resisting seepage and piping, and therefore consideration was given to reducing the depth of the cut-off sheet piles. For every one metre in which the sheet piles are shortened, the embankment would need to be widened by a minimum of 3m at its base. Notwithstanding this, the cut offs would still need to extend at least to the base of the desiccated surface clay layer (ie 3m below ground level).

Provided that the embankment material is placed as discussed in **Section 7.3**, and filter zones are included in the embankment as described in **Section 7.4**, sheet piles extending to the full height of the structure are not considered to be mandatory for the structure to function adequately. However given that the regulator may go for several years between inundation events, and is therefore subject to extended dry periods which may increase the likelihood of desiccation cracking around the structure, extended sheetpiles to above the full service level of the regulator have been incorporated into the design as an additional safety measure.

The concept design recommends that sheet piles extend under the levee 20m either side of the regulator structure itself. Jacobs agree with this recommendation. Beyond this zone, a clay cut-off formed by digging a trench to minimum 1m depth and reworking and recompacting the existing clay to remove any fissures or gilgai features is considered sufficient. This approach is considered valid since away from the structure, (where Lane's method no longer applies) hydraulic gradients are less than 0.1, assuming horizontal flow along the base of the levee. The greatest seepage risk is therefore associated with water percolating into the foundation materials via dessication cracks or sandy zones in the sufficial clays. The provision of a compacted clay cut-off beneath the levee (along with the filters proposed in Section 7.4) is therefore considered to be sufficient.

7.3 Fill selection and placement

7.3.1 K10 Regulator

The Kulkyne borrow area is assumed to be the preferred source of material for the K10 regulator and associated levee construction works. Material described as "Unit 2" at the borrow area is considered suitable for use as general impermeable fill for the regulator and levee structure. The approximate thickness of this material is shown for each test pit on **Figure 2**. The material has an average thickness of approximately 2.1m in the northern part of the borrow site, and 2.3m in the western part. Assuming typical bulking factors, the approximate volume of available borrow material can be estimated depending on the extents of the borrow available at the time of construction. In excess of 100,000m³ of suitable material is expected to be available at the site.

Fill material should be placed at a moisture content of between Optimum and 3% wet of optimum moisture content, and compacted to 98% standard maximum dry density. This level of moisture content and density will minimise the risk of dispersion of the material, as recommended by Fell et al, 2005.

Scour protection is recommended at both the upstream and downstream toe of the levee in the vicinity of the regulator structure itself. Gabions are recommended, as they are easy to construct and shape to suit the local topography and geometry of the structure. In particular, at the downstream toe where pore pressure relief for the downstream filter zone is required, gabions are expected to provide a better solution to tie in than the use of riprap, which may also require a coarsely graded filter for transition.

It is noted that Unit 2 material at the borrow site is up to 5% dry of optimum moisture content and will therefore require significant moisture conditioning before placement. It is not known how much groundwater levels fluctuate at the borrow site over the course of the year, and depending on when the borrow material is excavated, may be wetter or drier than noted in this report. A field wetting trial is therefore recommended at the commencement of construction to optimise the moisture conditioning process.

7.3.2 Bitterang Levee

For augmentation of the Bitterang Levee, material sourced from the existing Bitterang borrow area as described by GHD (2010) is considered to be acceptable for use in the currently proposed phase of works. GHD note that the plasticity index (PI) of this material is slightly lower than what is normally considered acceptable for water retaining embankments however is acceptable given the relatively low height of the structure. Jacobs agree and consider this material to be acceptable for augmentation works for the levee for the following reasons:

- The material was used for the existing Bitterang Levee, which appears to have had acceptable performance to-date;
- For widening of water-retaining embankments, it is generally preferable to adopt material with similar linear shrinkage characteristics as the original embankment, to ensure shrink-swell and strain compatibility between old and new fills.

7.4 Filter zones

Sand filters are recommended at the following locations in the embankments:

- A filter drain should be provided at the downstream toe to control the phreatic surface through the embankment;
- At the regulator structure-embankment interface (minimum 0.5m wide) extending the full height of the embankment, if sheet piles are terminated at foundation level;
- Beneath any revetment adjacent to the regulator structure on the upstream face.

If full-height sheet piles are incorporated into the design, then filter zones alongside the structure-embankment interface may be omitted, as the sheet piles will provide a physical barrier to seepage and piping.

A recommended filter envelope is provided in **Figure 5**, which has been designed to be compatible with the grading curves of the Unit 2 borrow material which are also shown in the figure. This filter envelope is consistent with that nominated by GHD for other nearby regulators, including Messengers and Oatey's. Also shown in the figure is a reference grading curve from filter sand used for the construction of the earlier regulators (GHD, 2010). This material is therefore considered suitable for use as filter sand for the K10 structure.

7.5 Bearing Capacity

The 4m high regulator structure, together with live load surcharge is expected to result in a bearing pressure of 100 to 150kPa under ultimate limit state conditions. The very stiff surface clays underlain by medium dense to dense sands suggests a bearing capacity in excess of 200kPa will be achievable at the site. Settlement is expected to be negligible and will be 'built out' during the construction phase.

Foundation conditions at Bitterang comprise very stiff clays and dense sands. These ground conditions are similarly expected to provide suitable bearing capacity for the proposed levee augmentation.

8. Summary and Conclusions

A geotechnical Investigation was undertaken at Chalka Creek at the proposed K10 regulator site, and at the nearby Kulkyne borrow site proposed to be the source of fill material for the structure, and nearby associated levees.

Ground conditions at the site were characterised by CPT testing, and generally comprise stiff desiccated clays and silty sands overlying fine to medium grained, relatively clean sand.

Geotechnical design parameters have been provided in this report for the site, along with a review of conditions at the borrow site. Borrow material is found to be moderately dispersive but otherwise suitable for embankment construction, assuming it is adequately moisture conditioned. Borrow material at the existing Bitterang borrow site is also considered acceptable for use in the augmentation of the adjacent Bitterang levees.

The geometry proposed at concept design stage is considered to be acceptable from a seepage point of view. Sheet pile cut-offs are recommended to extend to 20m either side of the structure with a reworked clay cut-off used beyond the sheet-pile.

A seepage assessment using the Weighted Creep Method by Lane (1935) has been undertaken and results suggest that if a central cut-off is provided under the structure, the result is likely to be satisfactory. A cut-off is necessary for any water depths in excess of 0.75m. Sand filters are recommended at the downstream toe of the structure, and at the structure embankment interface. Sand sourced from the Kulkyne borrow area is considered to be appropriate for use in the proposed filter zones.

9. References

- Fell R, MacGregor P, Stapledon D, Bell G (2005), Geotechnical Engineering of Dams, Taylor & Francis Group, London.
- Geological Survey of Victoria (1997), 1:250,000 Mildura Map sheet.
- GHD (2014), Report for Mallee Catchment Authority, Hattah Lakes SDL Adjustment Supply Measures Geotechnical Investigation
- GHD (2010), Report for Goublurn Murray Water, Hattah Lakes Floodplain Management Project, Hattah Lakes Borrow Pit Assessment, GHD report ref. 31/21413/188158
- GHD (2009), Report for Goulburn Murray Water, Hattah Lakes Flood Management Project Geotechnical Investigations Report, GHD report ref. 31/21413/165795
- Lane, EW (1935) "Security from under-seepage masonary dams on earth foundations", Trans. ASCE, 100, pp. 1235-1351.

Figures

											1						
							COPYRIGHT				IACODC'			DETAILED DESIGN OF HATTAH		ASTRUCTUR	-
							The concepts and information contained				JALUDO	WATER		DETAILED DESIGN OF TRATTAIL	NORTH SDE IN R	ASTROCTOR	-
							in this document are the copyright of				11 Kadard Street Talues				OF WODKS		
							Sinclair Knight Merz Pty Ltd (JACOBS)				VIC. 3616 Austrolia			LUCATION	UF WURKS		
							and are only to be used in accordance				Telephone 03 5624 6400 Focsimile 03 5824 6444						
							with the terms of Agreement with Couldurg-Murray Water, like or conving of				Job No: 15129400]				
D			/14				the document by a third party in whole	DRAWN	DESIGNED	REVIEWED	APPROVED	MANAGER ASSETS SERVICE	L				
D			MM	ISSUED FOR APPROVAL			or part without the written parminer of	ЧС		PROJECT MANAGER	PROJECT DIRECTOR		GMW	GOULBURN MURRAY RURAL WATER AUTHORITY	CAD DRAWING INDEX	SHEET NUMBER	DRAWING NUMBER REVISION
A 18	/02/16	K	KM	ISSUED FOR REVIEW - 85%			Circle's Keight Mars Div Ltd. (MCODE)	113					0000 60	AD CAREY PERCET (DO DOY 166) TATURA NO. 7616			
							Sincidir Knight Merz Pty Ltd. (JACOBS)	DRAWING CHECKED	DESIGNED CHECKED			1	CURR. NU.	40 CASET STREET (PU BUX 103), TATURA VIC. 3010		05	487513-0002 B
REV	DATE R	EVIEW P.I	MGR P.DIR	REVISIONS	REV. PLAN N	REFERENCE PLAN TITLE	constitutes an intringement of copyright							Telephone (03) 5833 5500 Fax (03) 5833 5501		UI I	407313-0002 8

NOT FOR CONSTRUCTION

								<u>PLAN</u> SCALE 1:1000				SCALE 1:1000 (A1) 20	0 20 10	40	60 80 100m	NOT FOR	CONSTR	RUCTION
							-	COPYRIGHT				IACODG'			DETAILED DESIGN OF HATTAH	NORTH SDL IN	FRASTRUCTUR	F
								The concepts and information contained				JALUDO	WATER		DETRIEED DESIGN OF HATTAN		- A - H - H - H - H - H - H - H - H - H	-
								Sinclair Knight Merz Ptv Ltd (JACOBS)				33 Kerferd Street. Totore			GEOTECHNICAL INV	ESTIGATIO	ON PLAN	
				50 St.				and are only to be used in accordance				Telephone 03 5824 6400 Focsimile 03 5824 6444					C	
								with the terms of Agreement with Goulburn-Murray Water. Use or copying of				Job No:		1	KULKTNE BU	KKUW AKEA	Г	
В		KM		ISSUED FOR APPROVAL				the document by a third party in whole	DRAWN	DESIGNED	REVIEWED PROJECT MANAGER	APPROVED PROJECT_DIRECTOR	MANAGER ASSETS SERVICE	CHW	COLUBIEN MURRAY PURAL WATER AUTHORITY	CAD DRAWING INDEX	SHEET NUMBER	DRAWING NUMBER REVISION
A	18/02/16	KM		ISSUED FOR REVIEW - 85%				Sinclair Knight Merz Pty Ltd. (JACOBS)	HS CONTRACT					CORR. NO.	40 CASEY STREET (PO BOX 165), TATURA VIC. 3616	CAD DIVINING INDEX	SHEET NOMBER	
REV	DATE R	DESIGN REVE REVIEW P.MG	APP'D R P.DIR	REVISIONS	REV.	PLAN NO.	REFERENCE PLAN TITLE	constitutes an infringement of copyright	DRAWING CHECKED	DESIGNED CHECKED					Telephone (03) 5833 5500 Fox (03) 5833 5501		OF	48/513-0006 B
																		A1

BOREHOLE COORDINATE TABLE

E E	BORROW P	IT
HOLE ID	EASTING	NORTHING
J TP1	632744	6168968
J-TP2	632836	6168986
J-TP3	632878	6168994
J-TP4	632932	6169004
J-TP5	632909	6169054
J-TP6	632809	6169039
J-TP7	632725	6169025
J-TP8	632669	6168849
J-TP9	632743	6168747
J-TP10	632658	6168907
J-TP11	632813	6168917

NOTE: COORDINATES ARE APPROXIMATE ONLY AND BASED ON HAND-HELD GPS AND ON-SITE MEASUREMENTS.

LEGENDS

🖶 TEST PIT – JACOBS

■ Unit 2 ■ Unit 3 × Optimum Moisture Content

Plastic Limit Liquid Limit

FIGURE 3 Moisture Content and Atterberg Limits v.s Depth

FIGURE 4		
Casagrande Chart		

—TP4 - 1.2m —TP1 - 1.6m —TP3 - 1.2m —TP6 - 3.2m —GHD Kulkuyne sand sample

FIGURE 5 FILTER GRADING AND PSD FOR KULKYNE BORROW AREA

Appendix A. Interpretative Long Section

NOTES:

1) INVESTIGATION LOCATIONS ARE APPROXIMATE AND BASED ON HAND-HELD GPS AND ON-SITE SETOUT. REFER TO GEOTECHNICAL REPORT.

BOREHOLE CO-ORDINATE TABLE

K10 REGULATOR										
HOLE ID	EASTING	NORTHING								
J-CPT1	630784	6170271								
J-CPT2	630790	6170257								
J-CPT3	630798	6170241								
J-CPT4	630791	6170286								
J-CPT5	630777	6170308								
GHD-CPT1A	630783	6170315								
GHD-CPT1B	630780	6170307								
GHD-CPT2	630786	6170292								
GHD-CPT3	630814	6170207								
GHD-CPT4	630807	6170224								
GHD-BH10	630779	6170312								
GHD-BH11	630812	6170212								

SCALE 1:250 (A1)	5 4 3 2 1	5 10 NOT FOR	CONSTR	20 25m RUCTION	
DETAILED D GEOT	ESIGN OF HATTAH ECHNICAL IN K10 REG	NORTH SDL IN ESTIGATIO	FRASTRUCTUR ON PLAN	E	
GOULBURN MURRAY RURA 40 CASEY STREET (PO BOX Telephone (03) 5833 5500	WATER AUTHORITY 165), TATURA VIC. 3616 Fox (03) 5833 5501	CAD DRAWING INDEX	SHEET NUMBER OF	DRAWING NUMBER 487513-0005	REVISION

4/14/2016 11:31:22 AMA1

Appendix B. CPT and test pit logs

			R	e.			TEST PIT LOG		но	LE NO:	J-TP1
PROJECT	: K1	10 Real	ulator H	attah	Lake	s	JOB NO : IS129400		F	PAGE : 1 (OF 1
POSITION	: E:	63274	4.000, N	l: 616	68968	3.000 (N	GA94) SURFACE ELEVATION :		L	OCATION	: Kulkyne-Hattah National
EQUIPMEN	NT TY	PE : 4	t Excav	ator			CONTRACTOR : Ashley Shirnack		E	BUCKET W	IDTH : 0.6m
DATE EXC	AVAT	ED:9	/11/15 t	o 9/1	1/15		LOGGED BY : AK CHECKED BY : RK		5	STANDARD	: AS1726-1993
EXCAVATION & WATER DETAIL	Dry Density	% Eines	Limits SAMPLES &	FIELD DATA	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY/ DENSITY	0 (blows/100mm)	COMMENTS Field Test Data & Other Observations
1 1	9	96 LL PI L	=38 =19 S=9 =24 S=1)m)m)m			Sitty CLAY (CI) grey-brown, trace hard nodules, trace fine sand grades to yellow brown 220m grading to weakly cemented sand Sitty CLAY (CL) grey-brown, trace fine sand, black nodules in matrix 280m 280m Sitty SAND (SM) fine to medium grain, low plasticity fines Test pit terminated at target depth at 2.9m	D	St to VSt		0.50: increased silt content? (CL-ML)
N Natura	EXC al/Existi	AVATIO	N g B B	uldoze	er	B Bu	SAMPLES & FIELD TESTS k Sample U Undisturbed Tube Sample VI Vary Losso			1/0	CONSISTENCY (Su)

	EXCAVATION	SAMPLES & FIELD TESTS	DENSITY		CONSISTE	NCY (Su)
N E	Natural/Existing cutting B Buldozer Excavator R Ripper	B Bulk Sample U Undisturbed Tube Sample D Small Disturbed Sample W Water Sample	VL Very Loose	VS	Very Soft	(0-12.5kPa) (12.5-25kPa)
ВН	Backhoe Bucket	ES Env Soil Sample EW Env Water Sample	MD Medium Dense	F	Firm	(12.5 25ki u) (25-50kPa)
	GROUNDWATER SYMBOLS Water level (static)	PP Hand Penetrometer (UCS result) SV Hand Vane Shear (P: Peak Su, R: Residual Su)	D Dense VD Very Dense	St VSt	Stiff Very Stiff	(50-100kPa) (100-200kPa)
		PHOTOGRAPHS YES NO	CO Compact MOISTURE CONDITION D = Dry M = Moist W = Wet	Н	Hard	(>200kPa)

JACOBS AGS REV04 (WORKING).GLB Log TEST PIT LOG - PHOTO HATTAH LAKE TEST PITS.GPJ <<DrawingFile>> 03/12/2015 16:49

		E	S	8		TEST PIT LOG			HÖ	LE NO:	J-1P10
ROJECT	: K10	Regulat	or Hatta	ah La	akes	JOB NO : IS129400			F	PAGE : 1	OF 1
OSITION	: E:63	2629.0	00, N: 6	6168	951.	000 (MGA94) SURFACE ELEVATION :			L	OCATION	: Kulkyne-Hattah National
	T TYPE	: 4t E	xcavato	or	4-	CONTRACTOR : Ashley	Shirnack		E	BUCKET W	IDTH : 0.6m
ATE EXCA): 9/11	/15 to 9	9/11/	15	LOGGED BY : AK CHECKEI	DRA : KK		5		0 : AS1726-1993
WATER DETAIL Moisture Content	Dry Density	Atterberg	SAMPLES & FIELD DATA	RL (m)	DEPTH (m)	O T O MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Ch. Secondary and Minor Componen	aracteristic ts	MOISTURE	CONSISTENCY/ DENSITY	5 10 15 20 20	COMMENTS Field Test Data & Other Observations
						Silty CLAY (CL) brown, grey-brown 0.50m Silty CLAY (CL) light brown, orange-brown, friable, trace fine sand 3.00m Clayey SAND (SC) 3.20m mottled orange-grey, fine grained, weakly cemented Test Pit terminated at target depth at 3.2m	in places		VSt		
Natural Excava	EXCAV /Existing of	ATION BR	Buld	lozer		SAMPLES & FIELD TESTS B Bulk Sample D Small Disturbed Sample W Water Sample	P VL Very Loose	Y		VS	CONSISTENCY (Su) Very Soft (0-12.5kPa) Soft (14.5 254Pa)
Excava H Backho Excava G E E E C E E C E C E C E C E C C E C	ROUNDV Water lev	/ATER S rel (static rel (durin	YMBOLS	S		D Small Disturbed Sample W Water Sample ES Env Soil Sample EW Env Water Sample PP Hand Penetrometer (UCS result) SV Hand Vane Shear (P: Peak Su, R: Residual Su)	L Loose MD Medium Dense D Dense VD Very Dense CO Compact			VS S F St VSt H	Very Soft (U-12.5kPa) Soft (12.5-25kPa) Firm (25-50kPa) Stiff (50-100kPa) Very Stiff (100-200kPa) Hard (>200kPa)

ſ

٦

JACOBS AGS REV04 (WORKING) GLB LOG TEST PIT LOG - PHOTO HATTAH LAKE TEST PITS.GPJ <<DrawingFile>> 03/12/2015 16:49

Г

	CORS	TEST PIT LOG	HOL	E NO: J-TP2	
PROJECT	: K10 Regulator Hattah Lake	JOB NO : IS129400	PA	NGE : 1 OF 1	
POSITION	E: 632782.000, N: 6168971	.000 (MGA94) SURFACE ELEVATION :	LC	CATION : Kulkyne-Hattah National	Park, Mi
EQUIPMEN	NT TYPE : 4t Excavator	CONTRACTOR : Ashley S	himack BL	JCKET WIDTH : 0.6m	
DATE EXC	CAVATED : 9/11/15 to 9/11/15	LOGGED BY : AK CHECKED	BY:RK ST	ANDARD : AS1726-1993	
EXCAVATION & WATER DETAIL Moisture Content	Mosture content Dry Density % Fines % Fines MERCES Ratherer Limits SAMPLES & FIELD DATA RL (m) DEPTH (m)	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Chara Secondary and Minor Components	acteristic BENSILA	COMMENTS COMMENTS Field Test Data & Other Observations	
5.5	.9 LL=25 LL=25 PI=3 LS=1 2.90m 	Silty Clay (CI-CL) dark brown grading to light brown 1.40m Silty CLAY (CL) orange-brown, trace fine sand orange-brown, increasing sand content <u>2.90m</u> <u>3.00m</u> Silty SAND (SM) pale brown, fine to medium grained, fines of low plast Test Pit terminated at target depth at 3m	city VD		
<u>N</u> Natura	EXCAVATION ral/Existing cutting B Buldozer	SAMPLES & FIELD TESTS B Bulk Sample U Undisturbed Tube Sample	DENSITY VL. Very Loose	CONSISTENCY (Su) VS Verv Soft (0-12 5kPa)	
E Excave BH Backh	vator R Ripper hoe Bucket GROUNDWATER SYMBOLS = Water level (static) = Water level (during drilling) = Water inflow = Water outflow	D Small Disturbed Sample W Water Sample ES Env Soil Sample EW Env Water Sample PP Hand Penetrometer (UCS result) SV Hand Vane Shear (P: Peak Su, R: Residual Su) PHOTOGRAPHS YES NO	L Loose L Loose MD Medium Dense D Dense VD Very Dense CO Compact MOISTURE CONDITION D = Dry M = Moist W = Wet	VS Very Suit (u-12.3KP3) S Soft (12.5-25kPa) F Firm (25-50kPa) St Stiff (50-100kPa) VSt Very Stiff (100-200kPa) H Hard (>200kPa)	

JA	\mathbf{CO}	B	S

TEST PIT LOG

HOLE NO: J-TP3

PROJECT	: K10 R	Regulato	or Hatta	ah La	kes	3	JOB NO : IS129400			F	PAGE	E : 1	0	F 1		
POSITION	: E:632	2836.00	0, N: 6	61689	988.	.000 (M	GA94) SURFACE ELEVATION :			L	-OCA		N :	Kulkyne-Hattah Natio	nal Pa	ark, N
EQUIPMEN		: 4t E>	cavato	or			CONTRACTOR : Ashley Shir	mack		E	BUCK			DTH : 0.6m		
DATE EXC/	AVATED	: 9/11/	'15 to 9 I	9/11/	15 T		LOGGED BY : AK CHECKED BY	C: RK		5	STAN	IDAF	RD :	: AS1726-1993		
EXCAVATION & WATER DETAIL Moisture Content	Dry Density % Fines	Atterberg	SAMPLES & FIELD DATA	RL (m)	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characte Secondary and Minor Components	eristic	MOISTURE	CONSISTENCY/ DENSITY	5 DCP	¹⁰ (blows/100mm) ¹⁵	20	COMMENTS Field Test Data & Other Observations		
	9 87	LL=55 PI=34 LS=15	1.20m D				Sitty CLAY (CL) grey, brown-grey, trace fine grained sand 1.20m Sitty CLAY (CH) brown, grey brown, trace fine to coarse grained sand, traigrained gravel 100m Test Pit terminated at refusal at 3m	ce fine to medium		VSt I				2.90: getting sandy with depth, excavator noted was getting hard, starting to hit sand		
Sal for ano 1990 E Excava BH Backho G = = F = =	EXCAVA ator oe Bucket GROUNDW/ = Water leve = Water leve = Water inflo = Water out	ATER SY ATER SY I (static) (during Sw flow	Bulda Ripp /MBOLS drilling)	ozer er		B Bul D Sm ES Env EW Env PP Han SV Han PHOTO NOTES	SAMPLES & FIELD TESTS (Sample U Undisturbed Tube Sample all Disturbed Sample W Water Sample (Water Sample 4 Penetrometer (UCS result) d Vane Shear (P: Peak Su, R: Residual Su) (SGRAPHS YES NO	DENSITY VL Very Loose L Loose MD Medium Dense D Dense VD Very Dense CO Compact MOISTURE CONDI D = Dry M = Moist V	ITIC W =	'N Wet		VS S F St VSt H	C Ve So Fi St Ve Ha	ONSISTENCY (Su) ery Soft (0-12.5kPa) oft (12.5-25kPa) rm (25-50kPa) tiff (50-100kPa) ery Stiff (100-200kPa) ard (>200kPa)		

JACO	BS [°]

TEST PIT LOG

HOLE NO: J-TP4

'ROJECT 'OSITION	: K10) Reg 33284	ulator 6.000	⁻ Hatta), N: 6	h Lake 16890	es 4.000 (M0	JOB NO : IS129400 A94) SURFACE ELEVATION :		PAG LOC	e : 1 Ation	OF 1 : Kulkyne-Hattah Nationa
QUIPMEN	NT TYP	ΡΕ: 4	4t Exc	cavato	r		CONTRACTOR : Ashley	Shirnack	BUC	KET W	IDTH : 0.6m
ATE EXC	CAVATE	D:9	9/11/1	5 to 9	/11/15		LOGGED BY : AK CHECKED	BY : RK	STA	NDARE) : AS1726-1993
EXCAVATION & WATER DETAIL Moisture Content	Dry Density	% Eines	Atterberg Limits	SAMPLES & FIELD DATA	RL (m) DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Chan Secondary and Minor Components	racteristic s	DENSITENCY	0 (blows/100mm)	COMMENTS Field Test Data & Other Observations
S	9	96 L F L	L=46 D=25 S=12	1.20m B			Silty CLAY (CL) dark brown		VSt 		1.00: increasing plasticity with depth
I Natura Excavi H Backh	EXCA al/Existing ator	AVATIC g g cutin	DN 19 B R	Bulda		B Bulk D Smu	SAMPLES & FIELD TESTS ample U Undisturbed Tube Sample Disturbed Sample W Water Sample 01 Sample	DENSITY VL Very Loose L Loose		VS S	CONSISTENCY (Su) Very Soft (0-12.5kPa) Soft (12.5.5kPa)

					R	S	8			TE	EST PIT LO	DG		H	IOL	E NC	: J-TP	6	
	PRO.IF	CT	· K1	0 Re		T Hatta	ahla	akes		JOE	3 NO · IS129400)			PA	GE : 1	OF 1		
	POSIT		: E:	6328	09.00	0, N: 6	1690)39.	000 (M	IGA94) SUI	RFACE ELEVAT	, ION :			LO	CATIO	N : Kulkyr	ne-Hattah National	Park, Mi
1	EQUIP	MEN	T TYF	E :	4t Ex	cavato	or			CO	NTRACTOR : A	shley Shirnack			BL	CKET	WIDTH : ().6m	-
	DATE I	EXCA	VATI	ED :	9/11/	15 to 9)/11/1	15		LOGGED BY : AK	CHE	CKED BY : RK			ST	ANDAF	RD : AS17	26-1993	
	EXCAVATION & WATER DETAIL	Moisture Content	Dry Density	% Fines	Atterberg	SAMPLES & FIELD DATA	RL (m)	DEPTH (m)	GRAPHIC LOG	Mu Soil Type, Colo Secon	ATERIAL DESCRIPT bur, Plasticity or Parti adary and Minor Corr	FION cle Characteristic pponents	MOISTLIRE	CONSISTENCY/	DENSITY	5 DCP ¹⁰ (blows/100mm) ¹⁵	S	COMMENTS Field Test Data ther Observations	
		14.4		89	LL=35 PI=14 LS=7.5	2.10m D				3.10m 3.20m 3.20m Sitty CLAY (CL-CI) mottled orange-brown, § 3.20m Sitty CLAY (CL-CI) pale-brown, friable, trac Test pit terminated at ta	grey, friable								
	N N E BH E	latural/ xcavati Backhoo ⊊ = 1 ∑ = 1 F = 1	EXC. Existin or e Buck ROUNI Water Water Water Water	AVATI g cutti et DWAT level (level (inflow outflow	ON B R ring B R FER SYY	Bulde Ripp MBOLS drilling)	- Contraction of the second seco		B Bull D Sm ES En EV En PP Har SV Har PHOTE	SAMPLES & FIELD k Sample U all Disturbed Sample U v Soil Sample v Water Sample d Penetrometer (UCS result) d Vane Shear (P: Peak Su, f SS VES	TESTS Undisturbed Tube Water Sample) R: Residual Su)	Sample VL Ver L Loo MD Me D Der VD Ver CO Cor NO MOIS D = Dry	DENSITY ry Loose jse dium Dense nse ry Dense mpact TURE CONDITI M = Moist W	ON = We	et	VS S F St VSt H	CONSIST Very Soft Soft Firm Stiff Very Stiff Hard	ENCY (Su) (0-12.5kPa) (12.5-25kPa) (25-50kPa) (50-100kPa) (100-200kPa) (>200kPa)	

	CORS	TEST PIT LOG	HOL	E NO: J-TP7	
PROJECT	: K10 Regulator Hattah Lake	s JOB NO : IS129400	PA	GE : 1 OF 1	
POSITION	: E: 632725.000, N: 6169025	.000 (MGA94) SURFACE ELEVATION :	LO	CATION : Kulkyne-Hattah National	Park, Mi
	T TYPE : 4t Excavator	CONTRACTOR : Ashley S	hirnack BU	CKET WIDTH : 0.6m	
DATE EXCA	AVATED : 9/11/15 to 9/11/15	LOGGED BY : AK CHECKED E	<u>3Y:RK ST</u>	ANDARD : AS1726-1993	
EXCAVATION 8 WATER DETAIL Moisture Content	Dry Density % Fines Atterberg Limits SAMPLES & FIELD DATA RL (m) DEPTH (m)	O MATERIAL DESCRIPTION CAR O Soil Type, Colour, Plasticity or Particle Chara Secondary and Minor Components	cteristic DENSITIA	COMMENTS COMMENTS Field Test Data & Other Observations	
	1.00m 1.00m 1.00m 	Silty CLAY (CL) dark grey, friable 0.50m Silty CLAY (CL) light brown, friable, trace fine sand Clayey SAND (SC) light brown-orange, weakly cemented in places 300m SAND (SP) pale brown, fine grained Test Pit terminated at target depth at 3m	D VStio H H H	I I	
N Natural E Excaval BH Backho	EXCAVATION /Existing cutting B Buldozer tor R Ripper ae Bucket	SAMPLES & FIELD TESTS B Bulk Sample D Small Disturbed Sample ES Env Soil Sample EW Env Water Sample	DENSITY VL Very Loose L Loose MD Medium Dense	CONSISTENCY (Su) VS Very Soft (0-12.5kPa) S Soft (12.52kPa) F Firm (25-50kPa)	
G ▼ = ∑ = ► = =	ROUNDWATER SYMBOLS Water level (static) Water level (during drilling) Water inflow Water outflow	PP Hand Penetrometer (UCS result) SV Hand Vane Shear (P: Peak Su, R: Residual Su) PHOTOGRAPHS VES NO	D Dense VD Very Dense CO Compact MOISTURE CONDITION D = Dry M = Moist W = Wet	St Stiff (50-100kPa) VSt Very Stiff (100-200kPa) H Hard (>200kPa)	

IACORS	TEST PIT LOG	HOLE NO: J-TP8
OJECT : K10 Regulator Hattah Lakes	JOB NO : IS129400	PAGE : 1 OF 1
SITION : E: 632669.000, N: 6168849.000	(MGA94) SURFACE ELEVATION :	LOCATION : Kulkyne-Hattah National
UIPMENT TYPE : 4t Excavator	CONTRACTOR : Ashley Shirnack	BUCKET WIDTH : 0.6m
	LOGGED BY : AK CHECKED BY : RK	STANDARD : AS1726-1993
MATER DETAIL Motsture Content bry Density % Fines % Fines % Fines fumits SAMPLES & FileLD DATA RL (m) DE PTH (m) DE PTH	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE MOISTURE CONSISTENCY EINSTRUCY BENSITY CONSISTENCY BENSITY CONSISTENCY BENSITY CONSISTENCY
11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.2 1.5=9 1.60m 1.6	Silty CLAY (CL) dark grey, low plasticity, friable, trace organic material 0.50m Silty CLAY (CL-CI) pale brown, trace fine sand, friable grading to mottled red-brown Clayey SAND (SC) 1.20m Clayey SAND (SC) 1.20m Test pit terminated at target depth at 3.2m	D VSt I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

		\mathbf{O}	B	S	8				TI	EST	PIT LC)G			HC	DLE	10:	J-TP	9	
ROJECT	г:	K10 R	egulat	or Hatta	ah La	akes	6		JO	BNO:	IS129400					PAGE	: 1	OF 1		
OSITION	N :	E: 632	825.00	00, N: 6	6168	680	.000 (MGA9	4)	SU	IRFACE	ELEVATI	ON :				LOCAT	ION	: Kulkyr	e-Hattah N	lational Pa
			: 4t Ex	kcavato	or	4.5			CC	ONTRAC	TOR : A	shley Shiri	nack			BUCKE		IDTH : ().6m	
			: 9/11/	15 to 9	9/11/	15		OGGED BY	r:Ar	۲	CHE	KED BY	: RK		_	STANL) : AS17	26-1993	
DETAIL	Moisture Content	Dry Density % Fines	Atterberg	SAMPLES & FIELD DATA	RL (m)	DEPTH (m)	GRAPHIC LOG	Soil Ty	N vpe, Cole Secol	MATERIAL our, Plasti ndary and	DESCRIPT icity or Partic Minor Com	ION le Characte ponents	ristic			5 10 (blowe/100mm)	15 20	& C	COMMENTS Field Test Da ther Observa	6 ta tions
				2.60m D			2.60m	Silty CLAY (CL aale grey grading to light SAND (SP) ght brown, find Fest pit termina) brown, e graine	yellow bro	own th at 3.15m				MD					
																		1		
Natu Exca H Back	E ivator khoe E GRC = Wa = Wa	EXCAVA isting cu Bucket UNDW/ ater leve	TION Itting B R ATER S' I (static) I (during	Buld Ripp YMBOLS J drilling)	ozer er		B Bulk Sar D Small Di ES Env Soil EW Env Wat PP Hand Per SV Hand Var	SAMPLES a nple sturbed Sampl Sample er Sample netrometer (UC ne Shear (P: Po	& FIELD e W CS resuli eak Su,	D TESTS Undistu Water S Water S R: Residu	urbed Tube S Sample ual Su)	Sample	E VL Very Loo L Loose MD Medium D Dense VD Very De CO Compac	DENSITY ose Dense nse t			VS S F St VSt H	CONSIST Very Soft Soft Firm Stiff Very Stiff Hard	ENCY (Su) (0-12.5kPa (12.5-25kP (25-50kPa) (50-100kPa (100-200kP (>200kPa)) a) a) Pa)

	Hole closed at 4.7m w et at	4.7m					
			Client	Jacobs	Predrill:	0.00 m Predril	le d
BL		^L 150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: -4.70 m	Date:	10/11/2015	
	INSTIC LESTING	Project:	Hattah Lakes K10 Re	gulator	Cone no.:	C10CFIIP.C14	058
		Location:	Chalka Creek		Project no .:	E032	
		Position:	630784, 6170271		CPT no.:	CPT_J1	2/2

Processed : RB

			qt in MPa]	Sleeve friction (fs) in MPa	[u2 in MPa	Fric	tion ratio (Rf) in %
		0 0	0 5 10 15	20	0 0.1 0.2 0.3 0).4 -	-0.5 0 0.5 1	1.5 0	2 4 6 8
		-0.5							
		-1							
	I (G.L.)	-1.5							
	und leve	-2							
	below gro	-2.5 -3							
	epth in m	-3.5							
	□ '	-4							
		-4.5							+
		-5							
		-5.5							
		-6.5							
		-7							p -
		-7.5							
		-8							
		-8.5	43.461						· · · · · · · · · · · · · · · · · · ·
		-9.5							
		-10							
		-10.5							
		-11							
			Test complete at 9.78m qc>5 Hole closed at 4.6m w et at 4	5MPa	n				
┢	_			_ r u:		ient	t: Jacobs	Predrill:	4.50 m Predrilled
		3			150 cm ² 10 cm ² G.L.: 0.00 m		W.L.: -4.60 m	Date:	10/11/2015
			INSTUTESTING	Pro	roject: Hattah Lakes K10	Re	egulator	Cone no.:	C10CFIIP.C14058
1.44				Lo	ocation: Chalka Creek			Project no	E032
L				Po	osition: 630784, 6170271			CPT no.:	CPT_J1A 1/1

Processed : RB

Processed : RB

CPT no .:

Checked: DRAFT

1/1

CPT_J2

Position:

630790, 6170257

Processed : RB

	^L 150 cm ² 10 cm ²	G.L.: 0.00 m	W.L.: 0.00 m	Date:	10/11/2015	
INSITU TESTING	Project:	Hattah Lakes K10 Re	gulator	Cone no.:	C10CFIIP.C14	058
	Location:	Chalka Creek	-	Project no .:	E032	
	Position:	630791, 6170275		CPT no.:	CPT_J4	2/2

Processed : RB

Appendix C. Laboratory test certificates

IL GEOTECH 3 Rose Avenue,	INICAL SERV , Croydon 3136	/ICES									Job Rej Dat	No Dort No e of Is	o sue	9		150 150 27/)18)18/ (11/1	R09₄ 5
Client	JACOBS SKI	M (MELBOU	RNE)							Tes	sted by	<i>'</i>			AN	R	
Project	IS129400 H	ATTAH LAK	ES								Dat	e teste	əd			25/	11/1	5
Location	VIA VICTORI	A									Che	ecked	by			AN	R	
Sample Iden	tification	J-TP1 @ 1	.6m								Sar	nple N	0			150)180	080
Sample Desc	cription																	
CLAY, mediu	ım plasticity, p	ale brown, t	race	of fine sa	and.													
Assumed soi	il particle dens	sity		2.	65 g/ci	т ³												
AS 1289.3.6.	1 and 3.6.3 -	Particle Size	Disti	ribution -	Standa	rd meth	od of	fine	e ar	nalys	sis using	a Hyd	ron	nete	ər			
Method of dis	spersion	Me	chan	ical	Los	s in pret	reatn	nen	t		0%							
Hydrometer t	type	g/l			Var	ation to	meth	od			-							
Particle	Percent		AS	SIEVE (mr	n)													
Size	Passing						075	150	000	425 600	18	36	2 ~	. ц	3.2	3.5	7.5	2.0
(mm)		100	Ļ				<i>.</i>	0	Ċ		· · ·	N Y	20 t	i oi ★★	*	: ~; ***	₩ ₩	ド ★
100.0	100	,00					\mathbf{k}	1			<u></u>	1	Ħ	F‡		<u>⊨</u> ‡	##	L L
75.0 52.0	100	- -					/	+			 	††		L		 	##	
53.U 37.5	100	90						+-		 - -	<u>↓</u> ↓	 	H	Ħ		盽	##	
26.5	100					¥		+					-			##	\mp	
20.5 19.0	100	80				↓ −−−− <i>↓</i> −		+								-	\mp	
13.2	100					+		-									\mp	
9.5	100	70				<i> </i>		\pm								\square	$\pm \pm$	
6.7	100	70				/	_	Ŧ						H		Ħ	$\pm \pm$	
4.75	100	ы				*		\pm									$\pm \pm$	
2.36	100	00 gs				<i> </i>	_	╈						1		L†	$\pm \pm$	
1.18	100	t Pa				/		+								L+	\pm	
0.600	99	19 50				¥		+						LT	_	##	##	
0.425	99	Den			X			+				 					++	
0.300	99	10						-									+++	
0.150	99	40			1			+-								\square	++	
0.075	96							-									\square	
0.055	04 76	30		\mathbf{X}				\pm							_		++	
0.033	63		×	×				+			<u> </u>	<u> </u>	Ħ	L_		#	##	
0.024	52	20						+			 	##	##	Þ‡	-	##	##	1
0.016	47							+				 	1	 		##	##	
0.012	43	40						+					-				##	
0.0083	39	10						Ŧ					H	H	_	FF	Ħ	
0.0060	34							Ŧ					H			Ħ	Ħ	
0.0043	31	0	L						 				Щ			1	17	5
0.0030	29		LAY	fine	medium	coarse	fine)	me	edium	coarse	fine		mea	dium	CO	arse	3BLE
0.0022	26 24				SILT				SA	AND			G	RA	VEL			COE
			0.0	002		0.0	60	Par	ticlo	Sizo	(mm) 2.	0					60	0.0
Gravel		Sai	nd			Silt		ral	ucie	SIZE	(11111)	C	Cob	bles	S		C	.0%
coarse	0.0%	coa	rse	0	.2%	COa	arse			38	3.8%	G	Gra	vel			C	.4%
medium	0.1%	me	dium	0.	.3%	me	dium			15	5.4%	S	San	d			11	.1%
nne Total	0.3% 0.4%	tine Tot	e al	10.	.o% .1%	tine Toi	; al			3 26	5.3% 2.5%	c c	olit Clav	,			62 2F	5% 0%
	0.170	, 01				, 01				02		7	ota	a/			100	0%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

Alex Pobert

Approved Signatory : Andrew Roberts

IL GEOTECH Rose Avenue	INICAL SERV , Croydon 3136	/ICES									Job Rej Dai	o No bort No te of Is	o su	е		150 150 27/	018 018/ 11/1	R09 5	15
Client Project Location	JACOBS SKI IS129400 H VIA VICTORI	M (MELBOL ATTAH LAH IA	JRNE (ES)							Tes Dai Chi	sted by te teste ecked	/ əd by			AN 26/ AN	R '11/1 R	5	
Sample Iden	tification	J-TP1 @ 2	2.9m								Sai	nple ∧	lo			150	0180	81	
Sample Des	cription																		-
silty SAND,	fine to mediun	n, pale brow	n, fine	es of lov	v plastici	ty.													
]
Assumed so	il particle dens	sity		2	.65 g/cı	т ³													
AS 1289.3.6	.3 - Particle Si	ize Distributi	ion - S	Standard	l method	of fine a	nalys	is L	ısin	gа	Hydrom	eter							
Method of di	spersion	Me	echan	ical	Los	s in pret	reatm	ent			0%]
Hydrometer	type	g/l			Var	iation to	metho	od			-								
Particle	Percent		AS	SIEVE (m	m)														1
Size	Passing			012 12 (11)			.075	.150	.300	.425	1.18	.36	0/.4 2	.5	3.2	6.5	87.5 53.0	'5.0	
100.0	100	100					<u> </u>	3 11		*	, 		τ Τ	<u>د ۲</u>		ÉŤ.	**	÷	k
75.0	100							Z	Ŧ	-			Ħ	<u> </u>		<u>h</u>	± 1		
53.0	100	90						<u>1</u>	_	+		<u> </u>				L†	$\pm \pm$		1
37.5	100						1	\pm		-		#	++	L+			$\pm \pm$		
26.5	100						1-1	\ddagger									\mp		1
19.0	100	80					+-+-	##		-			##	i -+		L-L-	$^{++}$		1
13.2	100						11	\mp		-		1	-			FF-	\mp		,
9.5	100	70						+		+							77		1
6.7	100							+									+		1
4.75	100	guis						H					H	H		H	\square		
2.36	100	ase					1	Ħ										_	}
1.18	100	nt F					*	\pm		-		+	++				\pm		:
0.000	99	9 <u>0</u> 50					A	1						<u> </u>			$\pm \pm$		
0.300	98	Ре					t	\ddagger	_	-		#							:
0.150	94	40						\mp					-	H		FF-	+		1
0.075	53					//		H									+		1
0.051	33	20				*		\square											
0.045	25	50														E			
0.035	17					<u> </u>		#		+		#	\pm	E‡		E E	\pm		1
0.025	13	20						##	_	+		##	##			F	††		1
0.018	11							\ddagger		+		+	#	井		F†	\ddagger		1
0.013	9 9	10				r		Ħ		+-		H	Ŧ	H		FF	\mp		
0.0068	7			×××	**			H		-						F	H		
0.0048	6	n						\square					H				+		ļ
0.0034	5	0	4	fine	medium	coarse	fine		med	um	coarse	fine		mec	lium	COi	arse	LES	
0.0024	5		CL	<u> </u>					SAL	חע				RAN	/FI	L		OBB	
0.0014	4			002	SILT	0.04	50		UAI			ļ					60	<u>0</u> 0.0	l
Graval		<u> </u>	nd 0.0			0.00	ŀ	Parti	icle S	Size ((mm) 2		204	blac			- -	00/	1
coarse	0.0%	5a C0i	arse	1	.1%	coa	rse			29	.8%	(Jub Gra	vel	>		C	.0%).1%	,
medium	0.0%	me	dium	3	.3%	me	dium			4	.5%		San	d			58	.7%	,
fine Tata'	0.1%	fin -	9 (a.)	54	.3%	fine	-1			2	.4%	S	Silt	_			36	5.7%	
	0.1%	To	tal	58	1%	Tot	ə/			- 36	1%	(ila	/			4	.5%	4

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

Ada Pobert

Approved Signatory : Andrew Roberts

IL GEOTECH Rose Avenue	INICAL SERV , Croydon 3136	/ICES									Job Rep Dat	No oort No e of Is) sue	9		150 150 27/)18)18/I)11/1	R096 5
Client Project Location	JACOBS SKM IS129400 H. VIA VICTORI	M (MELBO) ATTAH LA A	URNE KES)							Tes Dat Che	ted by e teste ecked	, ed by			AN 25/ AN	R 11/1 R	5
Sample Iden	tification	J-TP3 @	1.2m								San	nple N	lo			150	180	83
Sample Desc	cription																	
CLAY, high p	plasticity, grey-	brown, trac	ce of fi	ne to me	edium gr	avel, tra	ce of	fine	to c	oar	se sand							
Assumed sol	il particle dens	sity		2.	65 g/cı	n³												
AS 1289.3.6.	.1 and 3.6.3 -	Particle Siz	e Disti	ribution ·	- Standa	rd metho	od of	fine	ana	lysi	s using	a Hyd	ron	nete	er			
Method of dis	spersion	M	echan	ical	Los	s in pret	reatm	ent			0%							
Hydrometer t	type	g/			Var	iation to	meth	od			-							
Particle	Percent		AS	SIEVE (mi	n)													
Size (mm)	Passing				-		0.075	0.150	0.300	0.600	1.18	2.36 4 75	6.7.9	9.5	13.2	26.5	53.0	75.0
100.0	100	100						+							17		7 	- 1 -1
75.0	100							H						*	*		H	
53.0	100	90						\downarrow	*	* *		*	Ĥ				++	
37.5	100						\mathbf{x}	Ŧ									++	
26.5	100	80				\sum		\pm										
19.0	100	00			Ż	<u> </u>		\pm				ļ						
13.2	95							\pm				ļ					##	
9.5	94 02	70			<u>/</u>			++	_			<u> </u>					$^{++}$	
0.7	93	a			*			##									##	
2 36	90	uis 60			/			++				 	-				##	
1.18	90	Pas		7				##				 					+	
0.600	89	ent		1				+-									Ħ	
0.425	89	00 00						+									+	
0.300	89	ď		\sim								l						
0.150	88	40	\times					\pm				<u></u>					\pm	
0.075	87							\pm				ļ					\pm	
0.056	84	30						$^{++}$		H		<u> </u>	Ħ				\ddagger	
0.045	83	20						$^{++}$	_	H		 	#				\ddagger	
0.032	79 70							##				 	Ħ	-			\ddagger	
0.020	/ð 74	20						+					H				\square	
0.014	74 71							\square					H				H	
0.0077	65	10						Ŧ		\vdash			H	-		E	H	
0.0056	59							\pm									$\pm \pm$	
0.0040	53	n						\pm					H				++	
0.0029	46	U	٩Y	fine	medium	coarse	fine		mediu	m	coarse	fine		mea	lium	соа	irse	ILES
0.0021	43		CL		<u>си т</u>	I	-		SAN	D				RA	/EL	L		OBB
0.0012	40			ļ	SILI				C. 11 V.	-								0
Quest			0.0	002		0.00	50	Parti	icle Si	ze (r	2. nm)	0					60	.0
Gravel	0.0%	Sa	and arse	Λ	9%	Silt	rse			6	9%	(iob Trav	DIES Vel	;		0 a	.0% 9%
medium	7.1%	m	edium	0	.7%	me	dium			18.	0%	S	San	d			5	.1%
fine	2.8%	fin	е	3	.5%	fine				17.	2%	5	Silt				42	.1%
		-																

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

Alex Pobert

Approved Signatory : Andrew Roberts

IL GEOTECH Rose Avenue	INICAL SERV , Croydon 3136	/ICES							Job Reµ Dat	No oort No e of Is:) sue	ļ	15 15 27	018 018/ /11/1	R097 5
Client	JACOBS SKN	M (MELBOUI	RNE)						Tes	ted by	· .		AN	IR //////	_
Project Location	VIA VICTORI	ATTAH LAKI A	ES						Dat Che	e teste ecked l	ed by		25. AN	/11/1 IR	5
Sample Iden	tification	J-TP4 @ 1.	2m						Sar	nple N	0		15	0180	84
Sample Des	cription														
CLAY, mediu	um plasticity, g	rey and brow	/n, trace	of fine sand											
Assumed so	il particle dens	sity		2.65 g/ci	п ³										
AS 1289.3.6	.3 - Particle Si	ze Distributio	n - Stan	dard method	of fine a	nalys	is us	sing a	Hydrom	eter					
Method of di	spersion	Med	chanical	Los	s in pret	reatme	ent		0%						
Hydrometer	type	g/l		Var	ation to	metho	bd		-						
Particle	Percent	Γ	AS SIEV	'E (mm)											
Size	Passing					075	R	300 425	18	36	2 ~	5 3.2	9.0 3.5	7.5 3.0	5.0
(mm)		100				0 0	S V	000	· · ·		i vi	<u>~~</u> 	25 26	₩ ₩	
100.0	100	,00				*	* 		<u> </u>	ļĵ	ĻΠ	Ť	-#f	##	
75.0	100					4				 				++	
53.0	100	90			×					ļ		_		$\pm\pm$	
37.5	100											_		$\pm \pm$	
26.5	100	80			/_									++	
19.0	100	00			×							_		$\pm \pm$	
13.2	100				/									\pm	
9.5	100	70		/										$\pm\pm$	
6.7	100			/										\pm	
4.75	100	00 Sin		<u>_</u>										\pm	
2.30	100	as		×											
0.600	99	ntF		/								_		++	
0.000	99	<u>ଥ</u> ୍ୟ 50		x				+-+				_		$\pm \pm$	
0.425	99	Pe								 				++	
0.300	99	40	X	<u> </u>										++	
0.075	96		\mathcal{X}				<u>t-</u>			<u> </u>				\pm	
0.052	89									 	ĿШ		11	##	
0.043	85	30						++-		tt		++	-##	++	
0.031	78							+		 		++	##	##	
0.020	72	20					-	++-	 	 	F#	##	-##	##	1
0.015	64	-										_	##	##	
0.011	57						— —	+			11		_	++	
0.0080	49	10					 	++-	 	 		++	++	##	
0.0057	44						 			ļ	F#F	-		77	
0.0041	43	0					t				t‡t			++	
0.0029	41		₩ fir	ne medium	coarse	fine	m	nedium	coarse	fine		mediun	n co	arse	3LES
0.0021	38		5	0.1 7				SAND	1		GI	RAVF			OBE
0.0012	35	L	0 002	SILI		80					01	3 . V L I	-).0
Gravel		Con	d.002		0.00	F	Particl	e Size	(mm) 2.	0 C	oh!				0%
coarse	0.0%	coai	rse	0.4%	COA	rse		19	.4%	G	Grav	rel		C	.3%
medium	0.0%	med	lium	0.4%	me	dium		27	.2%	S	and	1		8	.0%
fine	0.3%	fine		7.2%	fine			7	.3%	S	ilt			53	.9%
mic															-

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

Alex Pobert

Approved Signatory : Andrew Roberts

IVIL GEOTECHNICAL SERVICES - 8 Rose Avenue, Croydon 3136 Client IACOBS SKM (MELBOURNE)									Job Rep Dat	Job No Report No Date of Issue			15018 15018/R098 27/11/15					
Client JACOBS SKM (MELBOURNE) Project IS129400 HATTAH LAKES Location VIA VICTORIA								Date Che	Tested by Date tested Checked by			ANR 25/11/15 ANR						
Sample Identification J-TP6 @ 3.2m								San	Sample No				15018085					
Sample Des	cription																	
CLAY, mediu	um plasticity, p	ale brown, v	vith fir	ne sand.														
Assumed so	il particle dens	sity		2.	65 g/ci	п ³												
AS 1289.3.6	.3 - Particle Si	ze Distributio	on - S	tandard	method	of fine a	nalvs	is L	ısin	аa	Hvdrom	əter						
Method of di	spersion	Me	chani	cal	Los	s in pret	reatm	ent		0	0%							
Hydrometer	type	g/l			Var	iation to	metho	od			-							
Deuttele	Deux sur (Ŭ	4.5.5															
Particle Size	Percent Passing		ASS	SIEVĒ (mr	n)		. 75	2	ОС	52	00	ω ic	,		~ ~	5		
(mm)	1 433mg						0.0	0.15	0.3(9.0 7.4 7.0	1.1	2.36	6.7	9.5	13.2	26.5	57.0 53.0	75.(
100.0	100	100					,	¥1	*		<u>← Ť</u>	*	ŕÌ	$\dot{\mathbf{x}}$	* 1		首首	**
75.0	100						\downarrow	#						-		 	11	
53.0	100	90					1	##		+				=			1-11	
37.5	100						Â	##						_				
26.5	100						f‡	##				-		_			11	
19.0	100	80						##		-							1-11	
13.2	100							\pm		_				1			1-11	
9.5	100	70				*		\pm										
6.7	100	10						##		_			_	_				
4.75	100	bu						\pm	=	+		1		1			11	
2.36	100	issi 60						##		+				_				+
1.18	100	t Pe						##	_	-				=			11	
0.600	100	50				<u> </u>		\pm		-				-				
0.425	100	Serce				<i></i>		Ħ		-				+				
0.300	99	ц.				×		Ħ		_				=				
0.150	99	40				f		$^{++}$	_	_				=		片	11	
0.075	89							\ddagger		-				<u> </u>		<u></u>	11	
0.055	72	30			<u></u>			‡	_	-			H	1		H-	11	
0.046	63			>	<u>(</u>			\ddagger	_	1				_			t=#	
0.034	52			\checkmark				##		-				=			11	
0.025	43	20	⊨,∕ľ	<u>`</u>				$^{++}$	_	-				=		<u> -</u>	<u>†</u> _#	
0.016	37		×					#		_				=		<u> </u>	† #	
0.012	34	10						$^{++}$		-		tt		_		<u> -</u>	14	
0.0085	30							#									11	
0.0061	28							\ddagger						_			† 	
0.0043	25	0					_	-	i_		LI		Ψ					ŝ
0.0031	22		(IA)	fine	medium	coarse	fine		med	lum	coarse	tine		med	um	coa	rse	3BLE
0.0022	21 17				SILT		SAND				GRAVEL			/EL			COF	
			0.0	02		0.06	io ,	Darti	icle 9	Sizo	(mm) 2.	0					60.	0
Gravel		Sar	nd			Silt	ŀ	aili		אבוכ ()	С	ob	bles	•		0.	0%
coarse	0.0%	0.0% coarse			0.1% coarse				36.1%			Gravel Sand				0.	0%	
medium	0.0% <i>medium</i> 1.0%			.0%	medium 12.3%				.3%		23.7%							
fine	0.0%	0.0% fine 22.6% fine 7.4			.6%	% Silt				56.0%								
Total	11 1107									-								·30/

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

Alex Pobert

Approved Signatory : Andrew Roberts

STANDARD COMPACTION

AS 1289.5.1.1

STANDARD COMPACTION

AS 1289.5.1.1

STANDARD COMPACTION

AS 1289.5.1.1

TEST RESULTS

AS 1289.2.1.1, 3.1.1, 3.2.1, 3.3.1, 3.4.1, 3.6.1 & 3.8.1

CIVIL GEOTECHNICAL SERVICES 6 - 8 Rose Avenue, Croydon 3136								15018 15018/R102 27/11/15			
	Client JACOB Project IS12940 Location VIA VIC	Te Da Ch	sted b ite tes iecked	SK 18-26/11/15 ANR							
	Sample Identification	Soil Description	Field Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Linear Shrinkage %	% Passing 75µm sieve	Emerson Class No*		
	15018080 J-TP1 @ 1.6m	CLAY, medium plasticity, pale brown, trace of fine sand.	11.3	38	19	19	9.0	96	2		
	15018081 J-TP1 @ 2.9m	silty SAND, fine to medium, pale brown, fines of low plasticity.	4.9	24	21	3	1.0	53	3		
	15018082 J-TP2 @ 2.9m	silty SAND / SAND, fine to medium pale brown, trace of low plastic fines	5.9	25	22	3	1.0	-	-		
	15018083 J-TP3 @ 1.2m	CLAY, high plasticity, grey-brown, trace of fine to medium gravel, trace of fine to coarse sand.	16.9	55	21	34	15.0	87	3		
	15018084 J-TP4 @ 1.2m	CLAY, medium plasticity, grey and brown, trace of fine sand.	19.0	46	21	25	12.0	96	-		
	15018085 J-TP6 @ 3.2m	CLAY, medium plasticity, pale brown, with fine sand.	14.4	35	21	14	7.5	89	2		
	15018086 J-TP8 0.6 - 1.6m	CLAY, medium plasticity, pale brown, with fine sand.	11.7	35	18	17	9.0	-	-		
	Notes AS 1289.3.1.1,3.2.1,3.4.1 Method of drying: Oven dried AS 1289.3.8.1* Water used: Distilled water Dry/Wet sieve: Dry Temperature: 20.2 °C Curing time: >24hrs Date sampled: 2015										

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

Ala Pobert

Approved Signatory : Andrew Roberts