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Executive summary 

This report provides a statistical analysis of the relationship between urban vegetation cover and 
urban heat island effect (UHI) in Melbourne metropolitan area, based on 2018 vegetation cover and 
land surface temperature data. Both the vegetation and UHI data were attributed to ABS 2016 census 
Mesh Blocks. This report also presents a heat vulnerability assessment at the SA1 (Statistical Area 1) 
level, making use of 2016 Census data along with the 2018 vegetation cover and land surface 
temperature data. The report provides an updated assessment of the relationship between UHI and 
vegetation cover, and an updated HVI, from the previously submitted interim report based on 2014 
vegetation cover and land surface temperature data (Sun et al., 2018). The 2014 and 2018 
temperature analysis are not directly compared in this project, as land surface temperature derived 
from Landsat thermal images is subject to the availability of satellite images, which causes significant 
annual variation between two different years due to climatic factors which are difficult to control for.   

The vegetation structure data was produced using CSIRO’s Urban MonitorTM approach (Caccetta et al, 
2018). This provides a three dimensional representation of the spatial distribution of vegetation at 30 
centimetre resolution. Vegetation cover was grouped into five height classes: grass (0-0.5m); shrub 
(0.5-3m); small tree (3-10m); medium tree (10-15m); large tree (15m+). 

The UHI is a measure of the deviation of urban temperatures relative to a non-urban baseline. The 
UHI measure was derived from land surface temperature (LST) data based on Landsat 8 thermal 
infrared data collected by the United States Geological Survey (USGS). This data provides a two 
dimensional representation of the spatial distribution of UHI at 30-meter resolution landscape 
(Devereux, & Caccetta, 2017).  

Summary of LST results: 

 Results show that mean UHI LST (UHI_2018_m) varied from 10.20°C to -7.16°C at Mesh 
Block level. 

 Four LGAs have over 9.5°C mean composite summer UHI (Brimbank, Casey, Melton, Moonee 
Valley). 

 With the exception of Mornington Peninsular, Yarra Ranges and Nillumbik, all urban LGAs 
had over 7.0°C mean composite summer UHI. 

 Large UHI concentration areas appeared in the west and southeast part of Melbourne 
metropolitan, along with some scattered areas with strong UHI effects in the northern suburbs. 
Lower LST concentration areas were mainly along the coastal areas, eastern and north eastern 
suburbs and highly vegetated areas. 

Global (classic statistical) relationships: 

 UHI had weak negative global correlations with percentage of grass and shrub covers. 
 UHI has medium global correlation with all other measures of vegetation covers; with the 

strongest negative correlation being with percentage of total tree cover.  
 Both simple regression models and multiple regression models show weak to moderate 

negative relationships (R2 < 0.40) between UHI and urban vegetation types. 



3 | P a g e  
 

 Therefore, analysis of the global relationship between UHI and vegetation confirms that 
vegetation is related to reduced UHI, but does not reveal the spatial variation of the 
relationship.  

Local (spatially explicit) relationships: 

 When considering the spatial variation in the relationship among LST and vegetation (using 
Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR)) we found that 
tree types are better predictors of UHI than grass and shrub vegetation cover UHI. When local 
area effects are considered, the combined all vegetation structure is a useful predictor of the 
UHI with R2=0.90.  

Heat Vulnerability 

 High-risk areas with Heat Vulnerability Index (HVI) 5 were mainly distributed in the suburban 
areas of Melton, Brimbank, Darebin, Casey, Wyndham LGAs. The risks in some areas were high, 
despite the lower magnitude of UHI, because of the high human sensitivity or lower adaptive 
capability to heat, such as the SA1s in north Dandenong and Casey.  

 Implications: The impact of UHI effects were weakened due to the low social vulnerability in 
some suburban areas benefitting from the low proportion of sensitive population or the high 
level of socioeconomic development, such as Nillumbik and some SA1s in Manningham LGAs. 
By contrast, high social vulnerability intensifies heat health risks in some newly urbanised 
areas of Melbourne, such as Tarneit and Altona North. 
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Introduction 

Temperatures in many urban areas are warmer than their rural surroundings. This phenomenon is 
known as the ‘Urban Heat Island’ which refers to temperature differences attributable to urbanisation. 
Urban heat islands can have multiple impacts on health, resource use, and air quality. In the absence 
of a dense network of meteorological stations to measure air temperature, satellite thermal infrared 
imagery is commonly used to estimate land surface temperatures (LST) instead. Land surface 
temperatures are most similar to near-ground air temperatures early in the morning. In most 
situations, however, land surface temperatures are useful for gauging the level of exposure to urban 
heat, even if there is not always a direct relationship with air temperature. In response to growing 
heat vulnerability of our urban dwellers, a body of research has sought to identify the causes of 
warming in urban areas and determine how increasing temperatures manifest as the urban heat island 
effect (Mirzaei, 2015). 

The correlation between urban green space and cooler urban temperatures has been established. 
However, detecting this correlation does not provide the specific information urban planners require 
to effectively utilise and develop urban green space as an adaptive strategy to protect urban dwellers 
from heat. First, this correlation is often observed using vague definitions of green space including 
broad categorisations of green space itself (Estoque, Murayama, & Myint, 2017), the use of remotely 
sensed normalised difference vegetation index (NDVI) values (Chun & Guldmann, 2014; Guo et al., 
2015), or simply comparing urban surface temperatures with vegetated areas a short distance from 
urban areas (Zhou, Zhang, Li, Huang, & Zhu, 2016). Variation in the categorisation of green space can 
obscure the diversity of vegetation in urban areas; or can identify relationships between vegetation 
and cooling in rural areas which may not translate effectively to urban environments. Wang, Zhan, 
and Ouyang (2017) also highlight the limitations with existing categorisations of built-up areas and the 
relationship with temperature. The result is that urban planners lack information concerning how the 
spatial arrangement and structure of urban vegetation can be used to generate local cooling effects.  

This report provides a statistical analysis of the relationship between high resolution urban vegetation 
cover and satellite derived urban heat island effect (UHI) in Melbourne via both classic and spatial 
explicit statistical approaches. The report provides an updated assessment of the relationship 
between UHI and vegetation cover, and an updated HVI, from the previously submitted interim report 
based on 2014 vegetation cover and land surface temperature data (Sun et al., 2018). The 2014 and 
2018 temperature analysis are not directly compared, as land surface temperature measurement is 
subject to the availability of satellite thermal images, e.g., Landsat-8 has a 16-day revisit cycle, which 
caused significant annual variation between different years due to climatic factors which are difficult 
to control for.   

Approach 

Aim: Analyse the relationships between urban vegetation structure (cover and height of the tree, 
shrub, and grass) and UHI. 

Vegetation data: 

The vegetation cover data was produced using CSIRO’s Urban Monitor approach (Caccetta et al, 2018). 
This provides a three-dimensional representation of the spatial distribution of vegetation at 20 
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centimetre resolution. Vegetation cover was grouped into five height classes: grass (0-0.5m); shrub 
(0.5-3m); small tree (3-10m); medium tree (10-15m); large tree (15m+). 

UHI data: 

The UHI is a measure of the deviation of urban temperatures relative to a non-urban baseline. The 
UHI measure was derived from land surface temperature (LST) data based on Landsat 8 thermal 
infrared data collected by the United States Geological Survey (USGS). This data provides a two 
dimensional representation of the spatial distribution of UHI at 30-meter resolution landscape 
(CSIRO, Thermal client report 2017). 

The Landsat 8 thermal infrared data used for this study were collected by the USGS at approximately 
9.50 AM Eastern Standard Time (EST); 10:50 AM Daylight Saving Time (DST). Only images in summer 
2017–18 that were cloud free across all of metropolitan Melbourne were included in this project. The 
UHI is a measure of the deviation of urban temperatures relative to a non-urban baseline. Native 
vegetated sites were used to establish the baseline. This was achieved by estimating a first-order fit 
to the temperature of native vegetation within and around each urban centre. This fit captures any 
broad-scale temperature trend that is likely independent of urbanisation, such as cooling with 
increased latitude or proximity to the coast. After subtracting this fit, the residuals may be interpreted 
as showing finer scale deviations from this trend, including deviations attributable to urbanisation of 
the landscape (CSIRO, Thermal client report 2017). 

Analysis: 

We analysed and quantified Landsat-8 derived Land Surface Temperature (LST) and vegetation types 
(Urban Monitor data) to investigate their relationship for total 55603 Mesh Blocks in Melbourne. Both 
datasets were corresponding to the year of 2018. The average difference in summer LST (UHI_2018_m) 
to baseline LST was used as the dependent variable. Both UHI and vegetation data were attributed to 
ABS 2016 Mesh Block boundary (GIS shapefile layer). 

Eight explanatory fields were set up: 

PerGrass: Percentage of Grass  
PerShrub: Percentage of Shrubs  
PerTr3_10m: Percentage of Tree with height from 3 to 10 meters  
PerTr10_15: Percentage of Tree with height from 5 to 15 meters  
PerTr15mPl: Percentage of Tree with height over 15 meters  
PerAnyVeg: Percentage of all vegetation (Grass, Shrubs, Trees)  
PerAnyTree: Percentage of all Tree types  
PerTrAndSh: Percentage of all Tree types and Shrubs  
UHI_2018_m: Average difference in Land Surface Temperature (LST) to baseline LST 

We integrated indicators of heat vulnerability to calculate a Heat Vulnerability Index (HVI) at SA1 level. 
The index consists of three component layers: heat exposure, sensitivity to heat, and adaptive 
capability. Integration was accomplished by summing the scores from the three vulnerability 
components, dividing the SA1s into quintiles, and attributing SA1s with a Heat Vulnerability Rating 
scaled from 1 to 5. 
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Results: 

1. Descriptive Statistics 

The descriptive statistics help understand the distribution of the variables used across different 
geographical levels. 

1.1. Mesh Block level: 

The eight explanatory fields listed above were attributed to the Spatial dataset of ABS Mesh Blocks 
across Melbourne metro area, subject to vegetation data availability (coverage of 2018 aerial 
imagery), n=55603.  

Across the whole dataset: Results show that mean UHI LST (UHI_2018_m) varied from 16.89°C to -
8.92°C at Mesh Block level (Table 1). The mean temperature was 8.36 °C above baseline LST. 

Table 1. Mean and Std of UHI_2018 and urban vegetation types for total 55603 Mesh Blocks 

 

N Minimum Maximum Mean 
Std. 

Deviation Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std. 

Error Statistic 
Std. 

Error 
PerGrass 55603 0.00 94.42 12.2166 11.21015 2.443 0.010 7.924 0.021 

PerShrub 55603 0.00 37.57 6.5293 3.13384 0.664 0.010 4.511 0.021 

PerTr03_10 55603 0.00 54.36 9.3492 5.42745 0.883 0.010 2.127 0.021 

PerTr10_15 55603 0.00 39.52 2.4252 3.08840 2.513 0.010 9.343 0.021 

PerTr15Pl 55603 0.00 71.61 1.5239 4.24101 6.069 0.010 47.956 0.021 

PerAnyTree 55603 0.00 79.17 13.2983 10.00905 1.688 0.010 4.062 0.021 

PerShrbTre 55603 0.00 82.62 19.8276 11.06801 1.187 0.010 2.616 0.021 

PerAnyVeg 55603 0.00 97.59 32.0441 15.82258 1.015 0.010 1.608 0.021 

UHI_2018_m 55603 -8.92 16.89 8.3571 2.18003 -1.019 0.010 3.881 0.021 

1.2. LGA level: 

The bar chart in Figure 1 shows, at the LGA level, the average difference in Land Surface Temperature 
(LST) to baseline LST. When aggregated to LGA, mean UHI LST (UHI_2018_m) varied from 0.03°C to 
10.75°C. Four LGA have over 9.5°C mean UHI (Brimbank, Casey, Melton, Moonee Valley). Note that 
some urban fringe LGAs only contain part of the LGA area due to the vegetation cover data availability. 
For a detailed breakdown of LGA statistics see Appendix 1 for data table and box plots). 
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Figure 1. The average difference (°C) in Land Surface Temperature (LST) to baseline LST (°C) between 

LGAs (LGA_name 2016)  

1.3. Spatial variation and the clusters of UHI: 

The sum of UHI effects at LGA level (Figure 1) present an average value for overview. They do not 
indicate the specific areas with significant UHI effects. The spatial pattern of UHI was investigated 
using Local Moran’s I, a spatial statistical method, to identify clusters of UHI at Mesh Block level (Figure 
2). The red areas indication regions where high value (mean UHI) areas are next to other high values. 
UHI large concentration areas appeared in the west (e.g. Melton) and southeast (e.g. Casey) part of 
Melbourne metropolitan, along with some scattered areas with strong UHI effects in the northern 
suburbs. Lower LST concentration areas were mainly along the coastal areas, Yarra Valley and highly 
vegetated areas. The red areas represent regions most effected by UHI, as there is a significant 
concentration of UHI at Mesh Block level. Therefore, these areas may be appropriate to target with 
initiatives to reduce UHI.  
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Figure 2. Map of UHI concentration areas in Melbourne metropolitan based on landsat-8 derived LST 

2. Relationship analysis 

2.1. Global correlations between LST and urban vegetation  

Pearson Correlation statistics were performed to explore the strength of the associations between 
vegetation structure variables and LST (Table 2). Eight vegetation structure variables (percentage of 
Grass, Shrubs, Trees with three different heights, all vegetation, all trees, Shrubs& all Trees in each 
Mesh Block) and the average difference in summer LST (UHI_2018_m) to baseline LST were used for 
analysis in SPSS. 

Table 2. Pearson Correlation coefficients between UHI_2018 and urban vegetation types 

  ** Correlation is significant at the 0.01 level (2-tailed).  
  ** Correlation is significant at the 0.01 level (2-tailed). 
 
UHI_2018_m has inverse correlations with the eight fields, with strongest coefficient (r) of 0.585 for 
PerAnyTree. 
 

  
PerGra

ss 
PerShr

ub 
PerTr3_1

0m 
PerTr10_

15 
PerTr15m

Pl 
PerAnyV

eg 
PerAnyTr

ee 
PerTrAnd

Sh 

UHI_2018
_m 

Pearson 
Correlati
on 

-.034** -.162** -.474** -.451** -.447** -.426** -.585** -.575** 

Sig. (2-
tailed) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 
55603 55603 55603 55603 55603 55603 55603 55603 
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This shows: 
 Grass has a weak negative impact on UHI (r =-0.034). 
 Shrub has weak negative impact on UHI (r = -0.162). 
 All individual tree types have medium negative impact on UHI (-0.4 > r > -0.5). 
 All trees and shrubs&trees have medium negative impact on UHI (r <-0.5). 
 Therefor in terms of reducing UHI, it is trees that would have the most impact, whereas 

shrubs minor and grass very little. 

2.2. Global regressions for LST and urban vegetation  

Simple and multiple linear regressions were performed to examine the relationships between average 
difference in LST to baseline LST (dependent variable) and urban vegetation structures (independent 
variables) in order to estimate the causal effects of vegetation on LST or to predict how effective urban 
vegetation can be to reduce the LST.  

2.2.1. Simple linear regression for LST and each vegetation types or combinations 

Dependent variable: UHI_2018_m 
Independent variables: PerGrass; PerShrub; PerTr3_10m; PerTr10_15; PerTr15mPl; PerAnyVeg; 
PerAnyTree; PerTrAndSh. 

Simple Regression Results/observation: Scatter plots in Appendix 2 (Figure s4 – Figure s11) 

“AnyTree” is observed as the best predictor of the explanatory variables (R2 =0.34), however, under 
simple linear it is a weak predictor of reduced UHI.  

2.2.2. Multiple linear regression for LST and the combination of all vegetation types 

Dependent variable: UHI_2018_m 
Independent variables: PerGrass; PerShrub; PerTr3_10m; PerTr10_15; PerTr15mPl 

SPSS Regression method: Enter 

The outputs from the multiple linear regression are in Table 3 and 4. As with single regression, 
multiple regression finds the combination of vegetation types is a weak predictor of UHI (R2 = 0.356). 
We expect that these weak relationship is partly due to geographical factors, in particular distance 
decay. For example, patches of small and isolated vegetation are not likely to influence UHI; whereas 
agglomerations of vegetation and tree patches are more likely to impact UHI.  
 

Table 3. Summary of Multiple linear regression model 

Model R R2 Adjusted R2 Std. Error of the Estimate 

1 .597a 0.356 0.356 1.74901 

a. Predictors: (Constant), PerTr15mPl, PerGrass, PerTr3_10m, PerShrub, PerTr10_15 
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Table 4. Coefficients of multiple linear regression model 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 10.322 0.02  520.939 0.00 

PerGrass -0.012 0.001 -0.062 -17.313 0.00 

PerShrub -0.006 0.003 -0.009 -2.175 0.03 

PerTr3_10m -0.154 0.002 -0.383 -74.395 0.00 

PerTr10_15 -0.028 0.004 -0.04 -7.414 0.00 

PerTr15mPl -0.177 0.002 -0.344 -81.618 0.00 

a. Dependent Variable: UHI_2018_m 

2.3. Geographically Weighted Regression (GWR) for LST (UHI) and urban vegetation 

Geographically Weighted Regression (GWR) is a technique for exploratory data analysis that provides 
estimates of regression coefficients for each geographical location, based on a weighting of other 
observations near that location. The basic assumption is that observations exhibit spatial dependency: 
in some areas the influence might be much stronger than in other areas. This has its root from the first 
law of geography "Everything is related to everything else, but near things are more related than 
distant things". The geographically weighted regression (GWR) method, a spatial form of linear 
regression, analyses spatial relationships between variables. GWR is more effective than global 
regression at exploring the spatially varied relationship between LST and vegetation variables. 

Ordinary Least Squares (OLS) regression, serves as a starting point to select the key explanatory 
variables. OLS is similar to linear regression but gives the maximum likelihood estimation on the 
relationships between dependent and independent variables. It is also used to measure the variables’ 
multicollinearity with the variance inflation factor (VIF). 

Observations from the OLS and GWR results:  
OLS results (Table 5) show that all vegetation types have negative relationships with UHI effect, 
although both grass and shrub are very poor predictors for UHI effect (r < 0.01). In addition, no 
significant multicollinearity was found between the explanatory variables (VIFs are moderate).  We 
then used all the five vegetation types as explanatory variables to build a GWR model. Results of GWR 
(Table 6) show that the model achieved adjusted R2=0.90, which indicates that LST difference in 90% 
of studied Mesh Blocks was explained by the combination of three types of vegetation. R-Squared is 
a measure of goodness of fit. Its value varies from 0.0 to 1.0, with higher values being preferable. It 
may be interpreted as the proportion of dependent variable variance accounted for by the regression 
model. 

Table 5. OLS observations 

Variables Coefficients p VIF 

PerGrass -0.0121 0.00 1.11 
PerShrub -0.0064 0.03 1.55 
PerTr3_10m -0.1539 0.00 2.29 
PerTr10_15 -0.0279 0.00 2.45 
PerTr15mPl -0.1767 0.00 1.53 
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Table 6. GWR report on R2 

 
 
To examine the spatial weighted influence of vegetation cover structure the GWR model generates 
local estimates (coefficients and R2) for the dependent variable (UHI). The spatial changes in the 
magnitude of the R2 parameter indicate the locally changing influence of tree cover structure on the 
dependent variable, here the UHI (see Figure 3). This is the essence of spatial heterogeneity: the 
structure of the model changes from place to place across the study area as the parameter estimates 
change in relation to each other in the model.  Local R2 range between 0.0 and 1.0 indicating how well 
the local regression model fits observed UHI values. Very low values indicate the local model is 
performing poorly. Mapping the Local R2 values to see where GWR predicts well and where it predicts 
poorly may provide clues about important variables that may be missing from the regression model. 
 
The GWR model also generates the local coefficients for independent variables. The coefficients for 
the individual contribution of the three different vegetation classifications (grass, shrubs, tree 3-10m; 
tree 10-15m; tree 15+) to the UHI effect are included in Appendix 3). The effects vary between 
different types and across different locations. In practical terms the local estimates can be used for 
mitigating strategies. The results also recognise that small and isolated patches of vegetation are less 
likely to influence temperature (expect perhaps at very local scale and undetectable by satellite), than 
consolidated patches. 
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Figure 3. Local R2 of GWR analysis between vegetation types and LST in Melbourne. darker colour 

indicates high goodness-of-fit. 
 

3. Vulnerability Assessment 

The heat vulnerability assessment is to identify areas where we might expect high vulnerability to heat 
waves. We focus on areas with higher UHI relative to baseline; in combination with selected land cover 
attributes and demographic characteristics. Table 7 shows the breakdown indicators for calculate the 
Heat Vulnerability Index (HVI). 
 
In the absence of a dense network of meteorological stations to measure air temperature, satellite 
thermal infrared imagery is commonly used to estimate land surface temperatures (LST) instead. Land 
surface temperatures are most close to near-ground air temperatures early in the morning. In most 
situations, land surface temperatures are useful for gauging the level of exposure to urban heat 
(Inostroza, Palme, & de la Barrera, 2016). We used LST derived UHI for heat exposure indicator. It is 
also acknowledged that socioeconomic factors play an important role in the ability of populations to 
prepare for, respond to, and recover from heat and their vulnerability (Rohat et al., 2019; Wilhelmi & 
Hayden, 2010).  

Land cover provides a sensitivity indicator for the retention of heat in the urban environment. 
 Following above analysis of vegetation impact of UHI, we used % trees as a sensitivity 

indicator, with high cover corresponding with a low sensitivity score. 
 We used % roads as a sensitivity indicator, with high cover corresponding with a high 

sensitivity score, as roads retain heat in the urban environment.  
o Note: % built up area is commonly used as a sensitivity indicator. If DELWP can provide 

building footprint data, this can be included in the analysis. 
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Demographic data: 
 We used population density (persons per square km) as a sensitivity indicator, with high 

number corresponding with a high sensitivity score, as denser populations are more sensitive 
to heat related health complications.  

 We used population (Percentage) of people >= 65 years old as a sensitivity indicator, with high 
number corresponding with a high sensitivity score, as elderly people are more sensitive to 
heat related health complications.  

 We used population (Percentage) of people <= 4 years old as a sensitivity indicator, with high 
number corresponding with a high sensitivity score, as very young people are more sensitive 
to heat related health complications.  

 We used persons in need of care as a sensitivity indicator, with high number corresponding 
with a high sensitivity score, as persons needing care are more sensitive to heat related health 
complications.  

 We used SEIFA-IRSD as an adaptive indicator, with high deciles corresponding with a high 
adaptive capacity score, as more advantaged populations have more resources to respond to 
heat.   
We used SEIFA-IEO as an adaptive indicator, with high deciles corresponding with a high 
adaptive capacity score, as more advantaged populations have more resources to respond to 
heat. 

 
Table 7. Indicators of exposure, sensitivity and adaptive capacity for heat vulnerability index 

 
Exposure 
Indicator 

 
Sensitivity Indicators 

 Adaptive capacity 
indicators 

UHI Vegetation Roads Population 
density 

Elderly Very 
young 

Persons 
need care 

SEIFA-
IRSD 

SEIFA-IEO 

A) Assign 
each SA1 
mean UHI 
based on 
meshblock
s; 
Normalise 
to 0-1 
range. 
 

B) Assign 
each SA1 
mean 
cover 
based on 
meshblock
s; 
Normalise 
to 0-1 
range. 

C) Assign 
each SA1 
mean 
cover 
based on 
meshblock
s; 
Normalise 
to 0-1 
range. 

D) Assign 
each SA1 
mean 
populatio
n density 
based on 
meshblock
s; 
Normalise 
to 0-1 
range. 

E) Assign 
each SA1 
mean 
elderly 
populatio
n based 
on 
meshblock
s; 
Normalise 
to 0-1 
range. 

F) Assign 
each SA1 
mean very 
young 
populatio
n based 
on 
meshblock
s; 
Normalise 
to 0-1 
range. 

G) Assign 
each SA1 
mean 
Persons 
need care 
based on 
meshblock
s; 
Normalise 
to 0-1 
range. 

H) Socio-
economi
c index 
score; 
Normali
se to 0-1 
range. 

I) 
Eucational 
and 
occupation
al level 
index 
score; 
Normalise 
to 0-1 
range. 

= A  = (B+C+D+E+F+G)/6  =(H+I)/2 
Exposure indicator into Quintiles 
Sensitivity Indicators into Quintiles 
Adaptive capacity indicators into Quintiles 
 
Sum aggregated indicators to determine vulnerability score. This gives equal weighting (one third 
each) to exposure, sensitivity, and adaptability.  
 
Heat Vulnerability Index = Exposure Index + Sensitivity Index– Adaptive Capacity Index 
 
HVI 1 = First quintile (1/3 (A + (B+C+D+E+F+G)/6 - (H+I)/2) 
HVI 2 = Second quintile (1/3 (A + (B+C+D+E+F+G)/6 - (H+I)/2) 
HVI 3 = Third quintile (1/3 (A + (B+C+D+E+F+G)/6 - (H+I)/2) 
HVI 4 = Fourth quintile (1/3 (A + (B+C+D+E+F+G)/6 - (H+I)/2) 
HVI 5 = Fifth quintile (1/3 (A + (B+C+D+E+F+G)/6 - (H+I)/2) 
HVI 0: means that the SA1 has no population in census 2016. 
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Normalisation and equal weighting for individual variables were used in the calculation with the 
reference of other studies (Aubrecht & Özceylan, 2013; Chow, Chuang, & Gober, 2012; Dong et al., 
2014; Tomlinson, Chapman, Thornes, & Baker, 2011; Vescovi, Rebetez, & Rong, 2005). The original 
scores of indicators were normalised between 0 and 1 using min-max normalisation, so that the 
normalized values of variables are relative importance measures of each SA1s in relation to the others. 

The assessment of heat vulnerability as SA1 level provides more detailed pattern of spatial 
heterogeneity than other studies at LGA level. However, the data can be aggregated to SA3 or LGA 
level.  

Figure 3 maps the HVI at SA1 across the study area (HVI 1-5 corresponding to lowest-highest 
vulnerability to heat). High-risk areas with Heat Vulnerability Index (HVI) 5 were mainly distributed in 
the suburban areas of Melton, Brimbank, Darebin, Casey, Wyndham LGAs. The risks in some areas 
were high, despite the lower magnitude of UHI, because of the high human sensitivity or lower 
adaptive capability to heat, such as the SA1s in north Dandenong and Casey. The impact of UHI effects 
were weakened due to the low social vulnerability in some suburban areas benefitting from the low 
proportion of sensitive population or the high level of socioeconomic development, such as Nillumbik 
and some SA1s in Manningham LGAs. By contrast, high social vulnerability intensifies heat health risks 
in some newly urbanised areas of Melbourne, such as Tarneit and Altona North. 
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Figure 3. Map of Heat Vulnerability Index (HVI) at SA1 level in Melbourne metropolitan area 
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4. Further work: identifying areas for heat mitigating  

Hot weather is a threat to human health, particularly for vulnerable populations, such as older or very 
young people in cities. Increased vegetation can help reduce temperatures and exposure to heat 
hazards. The spatial heterogeneity of heat-related diseases suggests that interventions (e.g. tree 
planting) should be targeted for maximum impact. Analysing heat vulnerability for communities offers 
opportunities for presenting information to support decision-making.  

The relationships between UHI and vegetation cover are spatially varying and therefore needed to be 
studied by means of geographically weighted models. To further predict the degree of heat reduction, 
more variables can be included and PCA (Principal component analysis) can be used to decide the 
important variables. Likewise, more heat vulnerability indicators can be included and PCA can be used 
to determine the level of heat vulnerability at local scales by providing insights into these indexes (Bao, 
Li, & Yu, 2015; Inostroza et al., 2016; Loughnan, 2013). 

Taking consideration of both the influence of vegetation on UHI (local R2 values from GWR) and HVI, 
we can identify SA1 areas where trees have higher impact on temperature and where the communities 
are more vulnerable to heat. These are areas to target for potential heat mitigation via increases in 
tree cover.   

The findings in this exercise warn against the simplistic use of global spatial or statistical analysis on 
available data to target areas for interventions. The approach enables local governments to identify 
hot spots of vulnerability, and allocate resources such as increased vegetation cover to vulnerable 
populations. 
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