

Appendix A Sampling Plan

Huntly Common Huntly Common Project - DELWP Sampling Plan Huntly Streamside Reserve Victoria

> 3 July 2020 58207 - 128,101 Rev1 JBS&G Australia Pty Ltd

www.jbsg.com.au

Huntly Common

Huntly Common Project- DELWP Sampling Plan

Victoria

3 July 2020

58207 - 128,101 Rev1

JBS&G Australia Pty Ltd

Table of Contents

1.	Intro	Introduction1									
	1.1	Background1									
	1.2	Objectives1									
	1.3	Scope of works1									
2.	Samp	ling Locations2									
3.	Samp	le Method4									
	3.1	Equipment4									
	3.2	Soil sampling4									
	3.3	Surface water sampling5									
	3.4	Sediment sampling5									
	3.5	Quality Assurance / Quality Control									
4.	Analy	tical Program7									
	4.1	Soil sampling7									
	4.2	Surface water sampling7									
	4.3	Sediment sampling7									
	4.4	Adopted criteria7									
5.	Logist	ics8									
	5.1	Timing									
	5.2	Access									
	5.3	JRA / SWMS									
	5.4	Personnel									
	5.5	Refuelling8									
	5.6	Amenities									
	5.7	Environment protection and rehabilitation8									
	5.8	Reporting9									

1. Introduction

JBS&G Australia Pty Ltd (JBS&G) has been engaged by Huntly Common Pty Ltd (Huntly Common, the 'Client') to undertake soil, sediment and water sampling at the Huntly Streamside Reserve, Huntly, Victoria (the 'site'). JBS&G have obtained DELWP permission to undertake the works on Crown Land. The works will be undertaken on Wednesday 8 July and Thursday 9 July 2020.

1.1 Background

The site comprises most of the Huntly Streamside Reserve and is on Crown Land in Huntly, Victoria. It is an artificial landform created from the deposition of sediment derived from historic mining activity in the Bendigo area. As result of migration of tailings downstream, the original course of the Bendigo Creek has been altered and the original location is covered by up to 3 m of tailings. Based on experience at other areas with historical tailings deposits, it is anticipated that the presence of the tailings onsite may be having a detrimental environmental impact due to the elevated concentrations of arsenic and mercury.

Huntly Common hold two mining licences for the site, MIN5512 and MIN5515 which enclose a total area of 164.8 Ha extending for approximately 3.9 km along Bendigo Creek between Leans Road and Millwood Road. Huntly Common propose to reclaim the deposited tailings, re-process them offsite and rehabilitate the Creek to its original location and natural form.

To understand the current baseline environmental condition of the site, JBS&G on behalf of Huntly Common propose the sampling program described in this document to collect soil, sediment and surface water data.

1.2 Objectives

The objectives of the proposed sampling program are:

- To understand the current risk to the environment and members of the public from the existing site contamination
- To understand the potential for any site contaminants to be mobilised during excavation works as part of the project, and to identify any control measures that will be required to protect the environment and human health
- To identify the extent to which the natural soil below the tailings has been impacted by leaching of contaminants from the overlying tailings and, consequently, to identify any measures that will be needed during site rehabilitation to manage this contamination.

1.3 Scope of works

The following sampling program is proposed:

- Soil sampling: Up to 10 test pit locations within the tailings material. Three soil samples from each test pit (ie 30 samples in total) will be obtained as well as three bulk samples
- Sediment sampling: Three sediment samples will be obtained (downstream, mid-stream and upstream)
- Surface water sampling: Three surface water samples will be obtained (downstream, midstream and upstream).

2. Sampling Locations

A total of 30 soil samples, 3 bulk soil samples, three surface water samples and three stream-bed sediment samples will be collected from the potential sampling locations presented on **Figure 1**. The specific location of the samples may be adjusted based on field observations.

Test pits will be located to achieve the greatest possible representation of the site. Soil samples within the test pit will be taken from tailings material and underlying natural soil where possible.

Surface water and sediment samples will be collected from three locations within close proximity to the tailings material on the site, upstream, midstream and downstream.

Due to the shallow nature of onsite watercourses, water samples will be collected from the middle of the water column and the depth of the water will be recorded.

Sediment samples will be collected within the creek in the same location as surface water samples.

3. Sample Method

Soil and water assessment work will be undertaken in accordance with the specific requirements for industrial waste in Victoria and is detailed in the EPA IWRG, specifically Publications IWRG621, IWRG702 and IWRG701.

The assessment of soil, sediment and water will also be completed in general accordance with National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 (NEPM) and relevant Australian Standards (AS4482.1, AS4482.2, AS4439.3 and AS5667.1).

3.1 Equipment

The sampling program will be conducted utilising the least amount of equipment possible to decrease the degree of environmental impact imposed by the works.

The works is anticipated to require the following equipment:

- 4-tonne excavator
- Mitsubishi Triton
- YSI multi-parameter water quality meter
- PID (photoionizing detector)
- Swing sampler (extendable sampling pole)
- Stericup and hand vacuum pump
- AMS Multi-Stage Sediment Sampler
- Waders
- Water sampling bottles
- Soil sampling jars
- Trowel
- Sample eskies

3.2 Soil sampling

Up to 10 test pits will be excavated throughout the site. The sampling plan above will be input into the ArcGIS Collector App so that the GPS coordinates of each sampling location can be tracked and recorded while onsite. The site condition of the test pit location will be photographed prior to and following backfilling to record any disturbance that occurs.

A 4-tonne excavator with a 0.5 m claw bucked will be used to progress each test pit to approximately 2 to 3 m deep, 3 m long and approximately 0.5 m wide (depending of depth of tailings material).

Excavated material will be excavated per horizon, and backfilled in the correct order.

The test pits will be sequentially advanced with constant visual assessment of the onsite Field Scientist. A log of the material observed will be maintained during excavation of the test pit. At least three samples will be collected from each test pit, from even depth intervals or where noticeable changes occur in the soil profile. The objective is to get at least one sample from the overlying sediment and one from natural material.

The samples (a couple of hundred grams each) will be placed in laboratory sample jars. A separate PID sample will be collected from each sample location in a zip lock bag for PID sampling. This soil will be returned to where it is was collected after PID readings have been recorded.

Two sets of QA/QC samples will be collected from the site. The QA/QC material of each set will be mixed so that the samples are identical.

Three bulk samples will be collected, from three testpits, in the south, middle and north of the site. The bulk samples will include material from all points of the soil profile and will be mixed to ensure a representative sample of the soil horizon. The three bulk samples will be submitted for laboratory fractionation into the three following particle size groups: <100, 100-250 and >250 microns.

No onsite personnel will enter the test pits, with samples being collected from excavated material stockpiled at the edges of the test pit.

The excavator will be situated at the safest position in the event of wall slumping. This will be at the narrow edge of the test pit offset as far as practicable.

Test pits will be open for the shortest time practicable. It is expected that most pits will be completed within 30 minutes and no pit will take longer than 50 minutes. Once the soil profile has been logged and samples collected, the test pit will be progressively backfilled in the same order in which it was excavated.

The re-instated surface of each test pit will be lightly compacted through compression with the excavator bucket.

3.3 Surface water sampling

Surface water will be collected by hand methods only – there is no requirement to sample from a boat.

Surface water will be collected from a sample bottle fastened to a swing sampler (extendable sampling pole) into the direction of flow. Due to the shallow nature of onsite watercourses, water samples will be collected from the middle of the water column and the depth of the water will be recorded.

A 500 mL water sampling bottle will be secured to a swing sampling pole and transferred to an open water sampling bottle so that field water quality measurements of temperature, dissolved oxygen, pH and conductivity can be recorded through use of a multiparameter field meter. After this, a full water sample bottle will be collected for laboratory analysis.

The swing sampler will also be used to collect water for field metals filtering. A small amount of water will be poured into a stericup and a hand help vacuum pump will be used to pull the water through the stericup filter. The filtered water will be transferred to 50 mL metal bottles with preservatives for laboratory analysis.

It is anticipated that surface water sampling will take 30 minutes at each sample location.

3.4 Sediment sampling

Sediment will be collected by hand methods only – there is no requirement to sample from boat.

A sediment core will be collected from three sample locations using an AMS Multi-Stage Sediment Sampler (hand core sampler). Sample size will be in the order of hundreds of grams.

The hand core sampler requires vertical force to penetrate the sediment surface, therefore waders will be required as the sample will be obtained from within the creek.

Each sediment core will be approximately 20 cm in depth and approximately 6 cm in diameter. It is anticipated that sample collection will cause only minimal and very short term, localised turbidity impacts. Sample size will be in the order of hundreds of grams.

A photograph of the core will be collected and then subsampled through the collection of a portion of the core for laboratory analysis.

It is anticipated that sediment sampling will take 45 minutes at each sample location.

3.5 Quality Assurance / Quality Control

As described in NEPM 2013, the applicable QA/QC measures will be implemented to ensure all results are quality assured.

Two duplicates and laboratory spilt samples will be collected for the soil samples.

One duplication and split samples will be collected for the sediment and water samples.

A triplicate blank vial will be present in each esky to ensure that all samples have been sealed correctly.

4. Analytical Program

4.1 Soil sampling

Analysis of the soil samples will include:

- pH
- Extended heavy metal suite
- Leachability on selected samples, up to 10 samples in total.

A total of 9 soil samples will be sent for analysis: 7 primary samples, one duplicate and one split sample.

Three bulk samples will be sent for fractionation in the three following particle size groups: <100, 100-250 and >250 microns

4.2 Surface water sampling

Analysis of the surface water samples will include:

- Field parameters
- Laboratory electrical conductivity (EC)
- Total Suspended Solids (TSS) and Total Dissolved Solids (TDS)
- Major cations and anions
- Extended heavy metals suite (field filtered).

A total of three surface water samples will be sent for laboratory analysis.

4.3 Sediment sampling

Analysis of the sediment samples will include:

- pH
- Extended heavy metal suite

A total of three sediment samples will be sent for laboratory analysis.

4.4 Adopted criteria

Adopted soil quality criteria:

- EPA Publication IWRG621 (2009) Soil hazard categorisation and management.
- National Environment Protection Council (2013) National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1).

Adopted water quality criteria:

- State Environment Protection Policy Waters of Victoria, October 2018, (SEPP, October 2018).
- Australian and New Zealand Environment Conservation Council, 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, (ANZECC, 2000).
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) (2018) Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia

5. Logistics

5.1 Timing

The sampling program will be undertaken over two full consecutive days between the hours of 8 am and 5 pm.

Test pitting work will start on Wednesday 8 July at 9 am and are expected to end at 5 pm

Sediment and surface water sampling with start 8 am Thursday 9 July and are expected to end at 4 pm.

All samples will be submitted for laboratory analysis in Melbourne at the end of works on Thursday.

There will be no night works.

5.2 Access

Access to the site will be gained from the Huntly Streamside reserve entrance from Leans Road.

The excavator will be transported to site on a trailer and will be transported long distances around site on trailer to enhance time efficacy.

The excavator operator will make the ultimate decision as to whether it is more efficient to float or track from each test pit location.

5.3 JRA / SWMS

JBS&G will prepare a Job Risk Analysis (JRA)/ Safe Work Method Statements (SWMS) and meet relevant Occupational Health and Safety (OH&S) requirements prior to undertaking works at the site.

5.4 Personnel

A total of three people will be required onsite to complete these works. These are two JBS&G field scientists, Anna Tuncks and Sequoia Weitman and one excavator operator.

Heritage works will be undertaken simultaneously by Justin Shiner from ACHM accompanied by Jamie from ACHM. In addional, two members of the Dja Dja Wurrung, Ron and Jackson, will also be attending site. Lastly, David Wright from Huntly Common will also attend site to collect some metallurgical samples.

5.5 Refuelling

There will be no refuelling onsite.

No fuels, oils or lubricants will be stored onsite.

5.6 Amenities

There will be no amenities onsite.

5.7 Environment protection and rehabilitation

JBS&G Field Scientists have undertaken similar works on sites across Australia, including in highly sensitive natural environments. Environmental risks will be managed as outlined in **Table 5.1**.

Environmental risks	Proposed management							
Damage to native vegetation	No test pitting will occur within 10 m of large trees to avoid interaction and damage of root zones. Sampling will avoid damage to native vegetation. Test pits will be located on areas dominated by exotic pasture species.							

Table 5.1: Environmental management

Environmental risks	Proposed management
Inversion of soil profile during	Topsoil will be separately stockpiled during test pit excavation so that proceeding
backfilling	soil profiles can be initially used to backfill the test pit and topsoil placed at the
	surface.
Erosion and sedimentation	The re-instated surface of each test pit will be smoothed and lightly compacted
	through compression with the excavator bucket to ensure it matches the adjoining
	landform and minimise any potential for erosion. Given the small footprint of each
	test pit and the proposed replacement of topsoil, reseeding of disturbed areas is
	not considered necessary.
	Test pitting will not be undertaken on steep banks and care will be taken in placing
	spoil material to ensure it does not enter waterways. If rain occurs, works will
	cease once the current open test pit has been backfilled and the natural surface
	reinstated.
Water quality	Care will be taken in placing spoil material to ensure it does not enter waterways.
	If rain occurs, works will cease once the current open test pit has been backfilled
	and the natural surface reinstated.
Cultural heritage	As excavation will be mainly within tailings material with limited disturbance to the
	natural soil, there is a low likelihood that archaeological artefacts will be
	encountered. If any material is found, work will cease, and the Dja Dja Wurrung
	consulted.
Waste management	All waste will be removed from site
Fire prevention	Subject to DELWP approval, the works will be undertaken in April – June 2020
	when fire risk is low. A fire extinguisher will be available on site.
Hydrocarbon spills or leaks	There will be no refuelling on site. Equipment to be used on site will be well
	maintained. In the event of any leaks of hydrocarbons from the excavator or
	vehicle, a clean-up kit will be available.

5.8 Reporting

Following technical analysis of the results from the soil, sediment and surface water samples, a letter report will be drafted in the context of the approvals processes. This will identify the current risk from site contamination and any control measures considered necessary during excavation and processing of tailings material to manage risks from contaminants.

Appropriate criteria will be identified given the proposed future use of the site (following completion of the rehabilitation works).

The report will also provide photos of test pit locations before excavation and after backfilling and assess the success of environmental management measures. If necessary, remedial measures will be proposed for discussion with DELWP.

A copy of the report will be provided to DELWP.

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
0	1 x Electronic copy	DELWP	16 March 2020
1	1 x Electronic copy	Huntly Common	3 July 2020

Document Status

Poy No	Author	Reviewer	Approved for Issue				
Rev NO.	Author	Name	Name	Signature	Date		
0	Anna Tuncks Environmental Scientist	Dave Blair State Lead – Environmental Impact Assessments	Dave Blair State Lead – Environmental Impact Assessments	than	16 March 2020		
1	Anna Tuncks	Lachlan Wilkinson Principal	Lachlan Wilkinson Principal	Sarton With	3 July 2020		

Appendix B Groundwater Resource Report

Groundwater Resource Report

Groundwater catchment: CampaspeDepth to water table: < 5mWater table salinity (mg/	438604 Northing: 2537686	
Groundwater layers (Aquifers and Aquitards)	Depth below surface (m)	Groundwater salinity (mg/L)
UTQA Upper Tertiary / Quaternary Aquifer layered clay, sands and silt	0 - 7	1001 - 3500
BSE Mesozoic and Palaeozoic Bedrock (basement) sedimentary (fractured rock): Sandstone, siltstone, mudstone, shale. Igneous (fractured rock): includes volcanics, granites, granodiorites.	7 - 207	1001 - 3500

There are no GMUs at this location

For further information about this report contact:

Department of Environment, Land, Water & Planning Email: ground.water@delwp.vic.gov.au

For further information on groundwater licensing in this area contact: Goulburn Murray Water Phone: 1800 013 357 Email: reception@g-mwater.com.au Website: http://www.g-mwater.com.au/water-resources/ground-water

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 16 July 2020 Date Updated: 11 January 2019

Environment, Land, Water and Planning

Introduction

Groundwater is part of the water cycle. When rain or snow falls on land, some of it evaporates, some flows to streams and rivers, and some seeps into the soil. Some of the water in the soil is used by plants but some continues to move down through the soil and rock until all the pores and cracks are full of water. This is known as the water table and this water is called groundwater.

Groundwater is a finite resource that, like surface water, is allocated under the Water Act (1989). A Bore Construction Licence is required to drill for groundwater including for domestic and stock purposes. Taking and using groundwater for commercial or irrigation purposes requires an additional licence.

Purpose of this report

This report has been prepared to provide potential groundwater users with basic information about groundwater beneath their property. This includes the different geological layers, the depths of the layers and the salinity of groundwater in the layers. Information on the groundwater management units (GMU) and any associated caps on the volume that can be licensed (the PCV) are also provided. **Definitions and context**

Description Term Groundwater Catchment An identified area of the State within which groundwater resources are connected. Easting / Northing The VICGRID 94 coordinates of the spot that was selected on the interactive map. Groundwater Salinity Indicates the possible concentration of salts within the groundwater. The salt content indicates the possible uses of the water (see the Beneficial Use Table below). Fertilisers and other contaminants can also enter groundwater and affect its use. It is up to you to make sure that the groundwater you use is suitable for your purpose. Aquifer An aquifer is a layer of soil or rock which stores usable volumes of groundwater. Aquifers are generally limestones, gravels and sands, as well as some fractured rocks where the cracks in the rock are open and connected (some basalts, sandstones and limestones). How much water can be pumped from an aquifer depends on how much water is stored in pores and cracks, how well connected the pores and cracks are, and how thick the layer is. It is more likely that volumes of water for irrigation and urban water supply will come from gravels, sands, limestones and basalts that are at least 30 metres thick. Low volumes of water for domestic and stock use are likely from any aquifer greater than 10 metres thick. The advice above is a guide only, as the amount of water available can be highly variable. Actual pumping volumes can only be determined from drilling, appropriate construction and testing of a bore. Aquitard An aguitard is a layer of rock or soil that does not allow water to move through it easily, limiting its capacity to supply water. Aquitards are generally silts, clays and fractured rocks (where there are few cracks in the rock or the cracks are poorly connected). Groundwater Management A collective term for groundwater management areas (GMAs) and water supply protection areas (WSPAs). GMAs and WSPAs are defined areas and depths below the surface where rules for Unit (GMU) groundwater use may apply. WSPAs often have caps on groundwater use and plans describing how the resource is managed. GMAs usually have caps on groundwater use and may have local plans and rules. All other areas are managed directly through the Water Act (1989). Always check with your local Rural Water Corporation to be sure that the information on the GMU is correct for your specific location. Permissible Consumptive A cap that is set under the Water Act (1989) declaring the total volume of groundwater that may be taken Volume (PCV) from the area. Once the PCV is reached, no additional extraction can be licensed for use within the area unless traded from another groundwater licence holder. Depth to Water Table This is an indication of the depth at which groundwater might first be encountered when drilling a bore. The depth can vary from year to year, and from place to place and may vary significantly from that indicated in this report.

Beneficial Use Table

Salinity range (mg/L TDS)	Beneficial use as described by State Environment Protection Policy (Groundwaters of Victoria) s160											
	Potable water - preferred	Potable water - acceptable	Potable mineral water	Irrigation	Stock water	Industry	Ecosystem protection	Buildings and structures				
<500	~	~	~	~	~	~	~	~				
501-1000		~	~	~	~	~	~	~				
1001-3500			~	~	~	~	~	~				
3501-13000					~	~	~	~				
13001+						~	~	~				

Accessibility

If you would like to receive this publication in an alternate format, please telephone or email the DELWP Customer Service Centre 136 186, email customer.service@delwp.vic.gov.au, or via the National Relay Service on 133 677 www.relayservice.com.au.

© The State of Victoria Department of Environment, Land, Water & Planning 2019

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 16 July 2020 Date Updated: 11 January 2019

Appendix C Photograph Log

Appendix D Test pit Logs

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36; 40;17.790, 144;18;31.160 EXCAVATOR OPERATOR Manny PLANT Excavator TOTAL DEPTH 2.4

COORD SYS MGA 55 SURFACE ELEVATION 144 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

сомм	COMMENTS Time: 10:30							
Depth (m)	Samples	DIA	Is Analysed?	Graphic Log	Material Description	Additional Observations		
	/TP01_0.5	0.0			TOPSOIL: Brown organic silty clay material, damp, loose sandy silt, soft	Damp		
-					SILTY SAND: Very loose, soft, silty sand	Dry		
- 1 - - - 1.5	<u>/TP01_1.0</u>	0.0	A					
2					GRAVELY SILTY SAND: 10 mm diameter rocks, very soft, loose, non plastic			
-	/TP01_2.4	0.0			GRAVEL LAYER: Conglomerate cobble gravel layer 5 cm diameter rocks NATURAL: Darker silty clayey slum chunks, damp.	Damp		

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 22 Jul 2020

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36; 39;56.870, 144;18;38.410 EXCAVATOR OPERATOR Manny **PLANT** Excavator TOTAL DEPTH 3

COORD SYS MGA 55 SURFACE ELEVATION 191 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

сомм	COMMENTS Time: 11:36, Bulk sample 01							
Depth (m)	Samples	DIA	Is Analysed?	Graphic Log	Material Description	Additional Observations		
_					TOPSOIL: rich darker organic silt, loose, damp, low plasticity	Rich earth odor Damp		
- - - 0.5 - -	<u>/</u> TP02_0.8 \	0.0			SILTY SAND: light brown, low plasticity, homogeneous, very loose	Dry		
- 1 -					ORGANIC: Old tree roots, highly degraded GRAVELY SILTY SAND: 5 cm diameter rocks, lighter, very soft, loose, non			
- - - - - -					plastic, sandy colour.			
- 2								
- 2.5	/ 1 F V Z_ 2.4 \	0.0				DUP & SPLIT		
_								
- 3	/TP02_3.0	0.0		(//// ////////////////////////////////	NATURAL: red/orange silty clay with clayey slum chunks, dry, heterogeneous	No odor Damp		

Disclaimer This log is intended for environmental not geotechnical purposes.

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36;39;47.800, 144;18;45.490 EXCAVATOR OPERATOR Manny **PLANT** Excavator **TOTAL DEPTH** 2

COORD SYS MGA 55 **SURFACE ELEVATION** 174 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

сомм	COMMENTS Time: 12:33							
Depth (m)	Samples	DIA	Is Analysed?	Graphic Log	Material Description	Additional Observations		
- - - 0.5	/TP03_0.4	0.0	M		TOPSOIL: Organic dark grey brown, very loose silt SILTY SAND: Light orange-brown sandy silt, with gravel	Roots from surrounding old trees in testpit		
1	/TP03_1.0	0.0	R		Non plastic, very loose, damp, soft but dense			
- - - 1.5 -								
2	/TP03_2.0	0.0			NATURAL: silty clay topsoil, dark brown material, clay clumps sticking together, moderate plasticity			

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 22 Jul 2020

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36;39;37.360, 144;18;40.440 EXCAVATOR OPERATOR Manny **PLANT** Excavator TOTAL DEPTH 2.1

COORD SYS MGA 55 SURFACE ELEVATION 186 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

сомм	COMMENTS Time: 14:14								
Depth (m)	Samples	DIA	Is Analysed?	Graphic Log	Material Description	Additional Observations			
					TOPSOIL: Organic material rich topsoil	Heterogeneity throughout profile			
- - - - 0.5	/TP04_0.5	0.0	M		SILTY SAND: Light orange-brown coarse silty sand. Moderate plasticity, very loose, heterogeneous clayey clumps, damp, soft.	Damp			
-		0.0							
- 1					FINE SILTY SAND: soft very fine sand. Lighter and drier version of above layer.	Dry			
	/1204_1.2 \	0.0							
- 1.5					FINE SILT: Very fine, lighter and drier than above. Intrusion of the 5 cm diameter gravel band.	Dry			
- 2									
_	/TP04_2.1	0.0	<u>/</u> N\		NATURAL: Red/ orange heterogeneous silt with clayey clumps				

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 22 Jul 2020

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36;39;25.520, 144;18;52.09 EXCAVATOR OPERATOR Manny PLANT Excavator TOTAL DEPTH 1.8

COORD SYS MGA 55 SURFACE ELEVATION 169 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

сомм	ENTS Time: 14:45	5 Bulk S	Sampl	le 02		
Depth (m)	Samples	DIA	Is Analysed?	Graphic Log	Material Description	Additional Observations
-	/TP05_0.4	0.0			TOPSOIL: Brown clayey silt, coarse, damp, medium plasticity, heterogeneous, soft, loose	Damp
- 0.5					SILTY CLAY: Lighter coarse clayey silt with clayey clumps.	Dry
- 1	/TP05_1.2	0.0	Z		SILTY SANDY CLAY: Lighter very soft, dry silty sand with clayey clumps.	
- 1.5					NATURAL: Same as above, but more orange in colour. Not a clear interface, but colour change indicates natural around 1.2 m.	
_	/TP05_1.8	0.0	<u>/N\</u>			/Refusal due to hard bottom \

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 22 Jul 2020

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36;39;14.110, 144;18;52.800 EXCAVATOR OPERATOR Manny PLANT Excavator TOTAL DEPTH 2.5

COORD SYS MGA 55 SURFACE ELEVATION 178 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

сомм	ENTS Time: 15:20)				
Depth (m)	Samples	DID	Is Analysed?	Graphic Log	Material Description	Additional Observations
	/TP06_0.5	0.0	M		TOPSOIL: Mosey soft grass surface, rich organic layer SANDY CLAY: Coarse clayey sand, light brown and damp, moderate plasticity, loose.	Damp
- - 					SANDY CLAY: Coarse clayey sand, lighter than above, damp, moderate plasticity.	
- - - 1.5	/TP06_1.3	0.0			FINE SILTY SAND: Very soft, fine silty sand, light sand colour, some gravel intrusions.	
- - - - -	/TP06_2.0	0.0			FINE SILT: Less damp, very soft, lighter, very loose silt, less gravel.	Dry
- 2.5						/Refusal due to hard bottom \

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 22 Jul 2020

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36;38;54.180, 144;19;11.700 EXCAVATOR OPERATOR Manny PLANT Excavator TOTAL DEPTH 1.6

COORD SYS MGA 55 SURFACE ELEVATION 173 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

соми	IENTS Time: 16:10) Bulk S	Samp	le 03		
Depth (m)	Samples	PID	Is Analysed?	Graphic Log	Material Description	Additional Observations
- 0.5	/TP07_0.3	0.0			SANDY CLAY: Coarse clayey sand, light brown and damp, moderate plasticity, loose.	Damp
- 1	/TP07_1.2	0.0			FINE SILTY SAND: Very soft, fine silty sand, light sand colour.	Dry
- 1.5 - Discla	/TP07_1.6	0.0	for el	nvironme	NATURAL: silty clay, dark brown material, clay clumps sticking together, moderate plasticity.	Page 1 of 1

produced by ESlog.ESdat.net on 22 Jul 2020

PROJECT NUMBER 58207 PROJECT NAME Huntly Common Contamination EXCAVATION COMPANY Eastern Plant Hire CLIENT Huntly Common Pty Ltd ADDRESS Huntly Streamside Reserve

TESTPITTING DATE 08/07/2020 9:00 AM- 6:00 P COORDINATES 36;38;51.380, 144;19;18.400 EXCAVATOR OPERATOR Manny PLANT Excavator TOTAL DEPTH 0.7

COORD SYS MGA 55 SURFACE ELEVATION 174 LOGGED BY Anna Tuncks CHECKED BY Lachlan Wilkinson

E s Additional Observations	Image: Section of the sectio
Depth Depth Is Anal	- 0.5 .00 M Image: second secon
- 0.5 1 POB_0.7 0.0 Image: second sec	

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 22 Jul 2020

Appendix E Soil Laboratory Results

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067

Attention:

Anna Tuncks

Report Project name Project ID **Received Date** 731111-S HUNTLY COMMON 58207 Jul 10, 2020

Client Sample ID			DS-01	US-01	MS-01	TP01-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI18800	M20-JI18801	M20-JI18802	M20-JI18803
Date Sampled			Jul 09, 2020	Jul 09, 2020	Jul 09, 2020	Jul 08, 2020
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.1	8.0	7.2	7.5
% Moisture	1	%	16	21	19	3.5
Heavy Metals						
Aluminium	10	mg/kg	4500	7600	1900	2100
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	43	59	39	230
Barium	10	mg/kg	25	65	26	25
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Bismuth	10	mg/kg	< 10	< 10	< 10	< 10
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	19	16	13	7.7
Cobalt	5	mg/kg	< 5	7.1	< 5	< 5
Copper	5	mg/kg	5.7	11	5.2	8.0
Iron	20	mg/kg	23000	19000	21000	14000
Lead	5	mg/kg	12	19	11	16
Manganese	5	mg/kg	56	160	35	110
Mercury	0.1	mg/kg	< 0.1	0.2	< 0.1	0.7
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	6.5	9.4	< 5	6.7
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	10	mg/kg	< 10	< 10	< 10	< 10
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Titanium	10	mg/kg	49	83	37	28
Uranium	10	mg/kg	< 10	< 10	< 10	< 10
Vanadium	10	mg/kg	31	22	22	< 10
Zinc	5	mg/kg	19	40	26	26
Alkali Metals						
Calcium	5	mg/kg	340	1000	470	650
Magnesium	5	mg/kg	470	1200	420	800
Potassium	5	mg/kg	560	1200	220	240
Sodium	5	mg/kg	110	170	110	28

Date Reported: Jul 16, 2020

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			DS-01 Soil M20-JI18800 Jul 09, 2020	US-01 Soil M20-JI18801 Jul 09, 2020	MS-01 Soil M20-JI18802 Jul 09, 2020	TP01-1.0 Soil M20-JI18803 Jul 08, 2020
Test/Reference	LOR	Unit				
Extended Metals Suite						
Phosphorus	5	mg/kg	110	150	210	150
Silicon	2	mg/kg	400	330	430	340
Sulphur	5	mg/kg	21	230	52	33

Client Sample ID			TP02-2.4	TP03-0.4	TP04-0.5	TP04-1.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI18804	M20-JI18805	M20-JI18806	M20-JI18807
Date Sampled			Jul 08, 2020	Jul 08, 2020	Jul 08, 2020	Jul 08, 2020
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.2	7.9	6.3	8.4
% Moisture	1	%	5.9	23	11	4.3
Heavy Metals						
Aluminium	10	mg/kg	5500	4900	3300	2700
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	890	1100	180	210
Barium	10	mg/kg	53	51	32	38
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Bismuth	10	mg/kg	< 10	< 10	< 10	< 10
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	14	12	10	7.0
Cobalt	5	mg/kg	9.4	9.8	6.1	< 5
Copper	5	mg/kg	21	28	10	7.0
Iron	20	mg/kg	30000	23000	17000	11000
Lead	5	mg/kg	100	44	23	14
Manganese	5	mg/kg	230	240	130	82
Mercury	0.1	mg/kg	2.8	4.1	0.6	1.2
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	15	18	8.5	5.2
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	10	mg/kg	< 10	< 10	< 10	< 10
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Titanium	10	mg/kg	45	41	40	52
Uranium	10	mg/kg	< 10	< 10	< 10	< 10
Vanadium	10	mg/kg	18	13	12	11
Zinc	5	mg/kg	65	79	39	21
Alkali Metals						
Calcium	5	mg/kg	2400	2600	490	1700
Magnesium	5	mg/kg	2400	3500	1300	1000
Potassium	5	mg/kg	580	650	460	410
Sodium	5	mg/kg	100	38	22	82
Extended Metals Suite						
Phosphorus	5	mg/kg	290	350	180	110
Silicon	2	mg/kg	250	280	320	280
Sulphur	5	mg/kg	240	160	44	70

Client Sample ID			TP06-0.5	TP08-0.7	DUP01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			M20-JI18808	M20-JI18809	M20-JI18810
Date Sampled			Jul 08, 2020	Jul 08, 2020	Jul 08, 2020
Test/Reference	LOR	Unit			
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	7.9	-
% Moisture	1	%	4.1	13	17
Heavy Metals					
Aluminium	10	mg/kg	1800	10000	5000
Antimony	10	mg/kg	< 10	< 10	< 10
Arsenic	2	mg/kg	110	47	720
Barium	10	mg/kg	20	32	48
Beryllium	2	mg/kg	< 2	< 2	< 2
Bismuth	10	mg/kg	< 10	< 10	< 10
Boron	10	mg/kg	< 10	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.0	20	12
Cobalt	5	mg/kg	< 5	< 5	7.2
Copper	5	mg/kg	7.2	11	15
Iron	20	mg/kg	12000	22000	19000
Lead	5	mg/kg	12	16	34
Manganese	5	mg/kg	130	52	160
Mercury	0.1	mg/kg	0.3	0.2	2.0
Molybdenum	5	mg/kg	< 5	< 5	< 5
Nickel	5	mg/kg	6.3	7.7	11
Selenium	2	mg/kg	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Thallium	10	mg/kg	< 10	< 10	< 10
Tin	10	mg/kg	< 10	< 10	< 10
Titanium	10	mg/kg	27	93	51
Uranium	10	mg/kg	< 10	< 10	< 10
Vanadium	10	mg/kg	< 10	31	14
Zinc	5	mg/kg	26	18	50
Alkali Metals					
Calcium	5	mg/kg	780	730	2300
Magnesium	5	mg/kg	1400	1600	2900
Potassium	5	mg/kg	230	1400	820
Sodium	5	mg/kg	31	190	110
Extended Metals Suite					
Phosphorus	5	mg/kg	210	87	250
Silicon	2	mg/kg	320	260	480
Sulphur	5	mg/kg	51	53	170

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Jul 13, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Extended Metals Suite	Melbourne	Jul 13, 2020	28 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES			
% Moisture	Melbourne	Jul 10, 2020	14 Days
Method: LTM CEN 7090 Mojeturo			

Method: LTM-GEN-7080 Moisture

	euro	fine			/	Austra	lia						New Zealand	
\$		11115	Enviro	nment Te	sting	Melbour Monter Dandenc Phone : IATA #	ne rey Road ong Sout +61 3 85 1261	d th VIC 3 564 500	3175)0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN -	- 50 005 085 521	web : www.eurofin	is.com.au e.ma	ail : EnviroSales@euro	ofins.com S	Site # 12	54 & 14	271		NATA # 1261 Site # 18217		Site # 23736		
Co Ao	Company Name: JBS & G Australia (VIC) P/L Address: PO Box 3166 Norwood SA 5067					O R(Pl Fa	rder I eport hone: ax:	No.: : #: :	731111 03 9642 0599		Received: Due: Priority: Contact Name:	Jul 10, 2020 2:38 PM Jul 17, 2020 5 Day Anna Tuncks		
Pr Pr	oject Name: oject ID:	HUNTLY CC 58207	OMMON								1	Eurofins Analytical Ser	vices Manager : Michae	I Cassidy
		Sa	mple Detail			HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Extended Metals Suite	Moisture Set					
Mel	bourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х					
Syd	ney Laboratory	- NATA Site # 1	8217							_				
Bris	bane Laborator	y - NATA Site #	20794							_				
Peri	th Laboratory - N	NATA Site # 237	736							_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					_				
1	DS-01	Jul 09, 2020		Soil	M20-JI18800		X	х	Х					
2	US-01	Jul 09, 2020		Soil	M20-JI18801		X	Х	Х					
3	MS-01	Jul 09, 2020		Soil	M20-JI18802		X	Х	X	_				
4	TP01-1.0	Jul 08, 2020		Soil	M20-JI18803	1	X	Х	X	_				
5	TP02-2.4	Jul 08, 2020		Soil	M20-JI18804		X	Х	X	_				
6	TP03-0.4	Jul 08, 2020		Soil	M20-JI18805		X	X	X	_				
7	TP04-0.5	Jul 08, 2020		Soil	M20-JI18806		X	X	X	_				
8	TP04-1.2	Jul 08, 2020		Soil	M20-JI18807		X	X	X	_				
9	TP06-0.5	Jul 08, 2020		Soil	M20-JI18808		X	X	X	4				
10	TP08-0.7	Jul 08, 2020		Soil	M20-JI18809		X	Х	Х					

Number of the set of			fine			Austral	lia						New Zealand	
Address wei wexweudenaonae weil Breidesbergeudenaon Sie # 192 felt Nat's 198 Set 713 Bie 2378 Company Name: PD Box 306 B. Norwood PO Box 306 B. Norwood		• Curo	11115	Environment	Testing	Melbour 6 Monter 0andenc Phone : - NATA # 1	ne rey Roac ong Sout +61 3 85 1261	1 h VIC 3 564 500	8175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: UBS & G Australia (MC) PA. Order No.: Recort #: 731111 Received: Jul 10, 2020 2:38 PM. Address: PO plox 3166 Nonwood S 363 007 Due: Jul 17, 2020 Project No.: G 3642 0599 Project No.: Jul 17, 2020 S Day Project No:: S S007 HUNTLY COMMON Fax: 0.3 8642 0599 Project No.: Contact Name: Aun 7 Locks Project No:: S S07 S S07 Fax: 0.3 8642 0599 Eurofins Analytical Services Manager : Michael Cassidy Melbourne Laboratory - NATA Site # 1254 & 14271 X X X X X Sample Detail X X X X X X X Melbourne Laboratory - NATA Site # 1254 & 14271 X X X X X X X 10 UP010 Mo8, 2020 Soil Mo2-I18810 X X X X 11 UP010 Mo8, 2020 Soil Mo2-I18810 X X X X	ABN –	50 005 085 521	web : www.eurofi	ns.com.au e.mail : EnviroSales@	eurofins.com	Site # 12	54 & 14	271		NATA # 1261 Site # 18217		Site # 23736		
Projecti Nam: HUNTLY COMMON Bries Barrie Sampie Detail 0	Co Ad	mpany Name: dress:	JBS & G Au PO Box 316 Norwood SA 5067	stralia (VIC) P/L 6			O Re Pl Fa	rder N eport none: ax:	No.: #:	731111 03 9642 0599		Received: Due: Priority: Contact Name:	Jul 10, 2020 2:38 PM Jul 17, 2020 5 Day Anna Tuncks	
Sample Detail Y Y X X X Melbourne Laboratory - NATA Site # 1254 & 14271 X X X X Sydney Laboratory - NATA Site # 1254 & 14271 X X X X Sydney Laboratory - NATA Site # 1254 & 14271 X X X X Bribbane Laboratory - NATA Site # 1234 & 14271 X X X X Bribbane Laboratory - NATA Site # 2074 X X X X Perth Laboratory - NATA Site # 20794 X X X X 11 DUP01 Jul 08, 2020 Soil M20-JI18810 X X 12 TP01-0.5 Jul 08, 2020 Soil M20-JI18811 X X 13 TP01-2.4 Jul 08, 2020 Soil M20-JI18814 X X 14 TP02-3.0 Jul 08, 2020 Soil M20-JI18814 X X 15 TP02-3.0 Jul 08, 2020 Soil M20-JI18815 X X 18 TP05-4.4	Pro Pro	oject Name: oject ID:	HUNTLY C0 58207	DMMON								Eurofins Analytical Ser	vices Manager : Michae	el Cassidy
Melbourne Laboratory - NATA Site # 1254 & 14271 X X X X X X X X Sydney Laboratory - NATA Site # 18217 Image: Comparison of the text of text o			Sa	ample Detail		НОГр	pH (1:5 Aqueous extract at 25°C as rec.)	Extended Metals Suite	Moisture Set					
Sydney Laboratory - NATA Site # 18217 Image: Construct and the system of the syst	Melb	ourne Laborato	ory - NATA Site	# 1254 & 14271		Х	Х	Х	Х					
Brisbane Laboratory - NATA Site # 20794 Image: matrix of the state stateststate state state state state state state state state	Sydr	ney Laboratory	- NATA Site #	18217										
Perth Laboratory - NATA Site # 23736 Image: Colspan="4">Image: Colspan="4" Image: Colspan="4" Image: Colspan="4"	Brist	bane Laboratory	y - NATA Site #	‡ 20794						_				
11 DUP01 Jul 08, 2020 Soil M20-JI18810 X X 12 TP01-0.5 Jul 08, 2020 Soil M20-JI18811 X Image: Constraint of the constraint of t	Perti	h Laboratory - N	ATA Site # 23	736						_				
12 If of 0.0 Doi 0, 220 Soil M20-JI1811 X 13 TP01-2.4 Jul 08, 2020 Soil M20-JI18812 X Image: Constraint of the constraint of	11	DUP01	Jul 08, 2020	Soil	M20-JI18810	Y		X	X	-				
10 11	13	TP01-2.4	Jul 08, 2020	Soil	M20-JI18812	X				_				
15 TP02-3.0 Jul 08, 2020 Soil M20-JI18814 X 16 TP03-1.0 Jul 08, 2020 Soil M20-JI18815 X Image: Constraint of the constraint	14	TP02-0.8	Jul 08, 2020	Soil	M20-JI18813	X				_				
16 TP03-1.0 Jul 08, 2020 Soil M20-JI18815 X Image: Constraint of the system 17 TP03-2.0 Jul 08, 2020 Soil M20-JI18816 X Image: Constraint of the system 18 TP04-2.1 Jul 08, 2020 Soil M20-JI18817 X Image: Constraint of the system 19 TP05-0.4 Jul 08, 2020 Soil M20-JI18818 X Image: Constraint of the system 20 TP05-1.2 Jul 08, 2020 Soil M20-JI18819 X Image: Constraint of the system 21 TP05-1.8 Jul 08, 2020 Soil M20-JI18820 X Image: Constraint of the system 22 TP06-1.3 Jul 08, 2020 Soil M20-JI18821 X Image: Constraint of the system 23 TP06-2.0 Jul 08, 2020 Soil M20-JI18822 X Image: Constraint of the system	15	TP02-3.0	Jul 08, 2020	Soil	M20-JI18814	X				_				
17 TP03-2.0 Jul 08, 2020 Soil M20-JI18816 X Image: Constraint of the system 18 TP04-2.1 Jul 08, 2020 Soil M20-JI18817 X Image: Constraint of the system 19 TP05-0.4 Jul 08, 2020 Soil M20-JI18817 X Image: Constraint of the system 20 TP05-1.2 Jul 08, 2020 Soil M20-JI18819 X Image: Constraint of the system 21 TP05-1.8 Jul 08, 2020 Soil M20-JI18820 X Image: Constraint of the system 22 TP06-1.3 Jul 08, 2020 Soil M20-JI18821 X Image: Constraint of the system 23 TP06-2.0 Jul 08, 2020 Soil M20-JI18822 X Image: Constraint of the system	16	TP03-1.0	Jul 08, 2020	Soil	M20-JI18815	Х								
18 TP04-2.1 Jul 08, 2020 Soil M20-JI18817 X Image: Constraint of the second constraints of the second consecond constraints of the	17	TP03-2.0	Jul 08, 2020	Soil	M20-JI18816	Х								
19 TP05-0.4 Jul 08, 2020 Soil M20-JI18818 X Image: Constraint of the second constraints of the second consecond constraints of the	18	TP04-2.1	Jul 08, 2020	Soil	M20-JI18817	Х								
20 TP05-1.2 Jul 08, 2020 Soil M20-JI18819 X Image: Constraint of the co	19	TP05-0.4	Jul 08, 2020	Soil	M20-JI18818	Х								
21 TP05-1.8 Jul 08, 2020 Soil M20-JI18820 X 22 TP06-1.3 Jul 08, 2020 Soil M20-JI18821 X 23 TP06-2.0 Jul 08, 2020 Soil M20-JI18822 X	20	TP05-1.2	Jul 08, 2020	Soil	M20-JI18819	Х								
22 TP06-1.3 Jul 08, 2020 Soil M20-JI18821 X 23 TP06-2.0 Jul 08, 2020 Soil M20-JI18822 X	21	TP05-1.8	Jul 08, 2020	Soil	M20-JI18820	Х								
23 TP06-2.0 Jul 08 2020 Soil M20-II18822 X	22	TP06-1.3	Jul 08, 2020	Soil	M20-JI18821	Х								
	23	TP06-2.0	Jul 08, 2020	Soil	M20-JI18822	Х								

📩 eurofins 🗉									New Zealand			
ABN - 50 005 085 521	BN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com							Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	JBS & G Aust PO Box 3166 Norwood SA 5067	tralia (VIC) P/L			O R P F	rder I eport hone: ax:	No.: : #: :	731111 03 9642 0599		Received: Due: Priority: Contact Name:	Jul 10, 2020 2:38 F Jul 17, 2020 5 Day Anna Tuncks	M
Project Name: Project ID:	HUNTLY COI 58207	MMON							E	Eurofins Analytical Se	rvices Manager : Mich	ael Cassidy
	Sar	nple Detail		HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Extended Metals Suite	Moisture Set					
Melbourne Laborate	ory - NATA Site	# 1254 & 14271		X	X	Х	X					
Sydney Laboratory	- NATA Site # 18	3217										
Brisbane Laborator	y - NATA Site # 2	20794						_				
Perth Laboratory - I	NATA Site # 2373	36						_				
24 TP07-0.3	Jul 08, 2020	Soil	M20-JI1882	3 X				_				
25 TP07-1.2	Jul 08, 2020	Soil	M20-JI1882	<u>+ x</u>				4				
26 TP07-1.6	Jul 08, 2020	Soil	M20-JI1882	<u>; x</u>				4				
27 TP08-0.2	Jul 08, 2020	Soil	M20-JI1882	3 X	_			4				
28 TB-02	Jul 08. 2020	Soil	M20-JI1882	/ X								
	1 ,											

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Method BlankImage of the second s
Heavy MetaisImage< 10
Aluminummg/kg< 1010PassAntimonymg/kg<10
Antimony mg/kg < < 1 10 Pass Arsenic mg/kg < 2
Arsenic mg/kg < 2 2 Pass Barium mg/kg <10
Bariummg/kg< 1010PassBerylliummg/kg<2
Berylliummg/kg<22PassBismuthmg/kg<10
Bismuth mg/kg < 10 Pass Boron mg/kg < 10
Boronmg/kg< 1010PassCadmiummg/kg<0.4
Cadmium mg/kg < 0.4 0.4 Pass Chromium mg/kg <5
Chromium mg/kg < 5 5 Pass Cobalt mg/kg < 5
Cobalt mg/kg < 5 5 Pass Copper mg/kg < 5
Copper mg/kg < 5 6 5 Pass Iron mg/kg < 20
Iron mg/kg < 20 20 Pass Lead mg/kg <5
Lead mg/kg < 5 5 Pass Manganese mg/kg < 5
Manganese mg/kg < 5 5 Pass Mercury mg/kg < 0.1
Mercury mg/kg < 0.1 Pass Molybdenum mg/kg <5
Molybdenum mg/kg <5 Fass Nickel mg/kg <5
Nickel mg/kg < 5 5 Pass Selenium mg/kg < 2
Selenium mg/kg < 2 2 Pass Silver mg/kg < 0.2
Silver mg/kg < 0.2 Pass Thallium mg/kg < 10
Thallium mg/kg < 10 Pass Tin mg/kg < 10
Tin mg/kg < 10 Pass Titanium mg/kg < 10
Titaniummg/kg< 1010PassUraniummg/kg< 10
Uraniummg/kg< 1010PassVanadiummg/kg< 10
Vanadium mg/kg < 10 Pass Zinc mg/kg < 5
Zinc mg/kg < 5 5 Pass Method Blank
Method Blank Method Blank Makali Metals Image: Second
Alkali Metals Image: Second Seco
Calcium mg/kg < 5 5 Pass Magnesium mg/kg < 5
Magnesium mg/kg < 5 5 Pass Potassium mg/kg < 5
Potassium mg/kg < 5 5 Pass Sodium mg/kg < 5
Sodium mg/kg < 5 5 Pass Method Blank Extended Metals Suite 5 Compared Science 5 Pass Phosphorus mg/kg < 5
Method Blank Second Blank<
Extended Metals Suite mg/kg < 5 5 Pass Phosphorus mg/kg < 2
Phosphorus mg/kg < 5 5 Pass Silicon mg/kg < 2
Suprui IIIg/kg < 5 5 Pass
LCS - % Recovery
Antimony 9/ 102 80-120 Pass
Arcenic 9/ 101 80-120 Pass
Alsenic % 101 00-120 Fass Barium % 101 80-120 Pass
Darium 70 101 00-120 Fdss Beryllium % 114 80-120 Dass
Bismuth % 105 80.120 Pass
Boron % 110 80.120 Pass
Cadmium % Q3 80-120 Page
Openmium 70 00 00 120 1 ass Chromium % 105 80.120 Page
Cohalt % 107 80-120 Page
Copper % 105 80-120 Pass
Iron % 104 80-120 Pass

Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code	
Lead			%	107		80-120	Pass	
Manganese			%	104		80-120	Pass	
Mercury			%	95		75-125	Pass	
Molybdenum			%	102		80-120	Pass	
Nickel			%	104		80-120	Pass	
Selenium			%	97		80-120	Pass	
Silver			%	94		80-120	Pass	
Thallium			%	105		80-120	Pass	
Tin			%	101		80-120	Pass	
Titanium			%	105		80-120	Pass	
Uranium			%	102		80-120	Pass	
Vanadium			%	102		80-120	Pass	
Zinc			%	102		80-120	Pass	
Test	I ah Samnle ID	QA	Unite	Result 1		Acceptance	Pass	Qualifying
1631	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery						 1		
Heavy Metals	1			Result 1				
Antimony	M20-JI18802	CP	%	100		70-130	Pass	
Arsenic	M20-JI18802	CP	%	84		75-125	Pass	
Barium	M20-JI18802	CP	%	85		75-125	Pass	
Beryllium	M20-JI18802	CP	%	74		75-125	Fail	Q08
Bismuth	M20-JI18802	CP	%	113		75-125	Pass	
Boron	M20-JI18802	CP	%	91		75-125	Pass	
Cadmium	M20-JI18802	CP	%	96		75-125	Pass	
Chromium	M20-JI18802	CP	%	109		75-125	Pass	
Cobalt	M20-JI18802	CP	%	117		75-125	Pass	
Copper	M20-JI18802	CP	%	103		75-125	Pass	
Lead	M20-JI18802	CP	%	114		75-125	Pass	
Manganese	M20-JI18802	CP	%	106		75-125	Pass	
Mercury	M20-JI18802	CP	%	102		70-130	Pass	
Molybdenum	M20-JI18802	CP	%	105		75-125	Pass	
Nickel	M20-JI18802	CP	%	99		 75-125	Pass	
Selenium	M20-JI18802	CP	%	100		 75-125	Pass	
Silver	M20-JI18802	CP	%	98		 75-125	Pass	
Thallium	M20-JI18802	CP	%	106		 75-125	Pass	
Tin	M20-JI18802	CP	%	105		 75-125	Pass	
Titanium	M20-JI18802	CP	%	87		 75-125	Pass	
Uranium	M20-JI18802	CP	%	110		 75-125	Pass	
Vanadium	M20-JI18802	CP	%	105		 75-125	Pass	
Zinc	M20-JI18802	CP	%	98		75-125	Pass	
Spike - % Recovery					-	1		
Heavy Metals	1			Result 1				
Aluminium	M20-JI18805	CP	%	145		75-125	Fail	Q08
Antimony	M20-JI18805	CP	%	106		 70-130	Pass	
Barium	M20-JI18805	CP	%	107		 75-125	Pass	
Beryllium	M20-JI18805	CP	%	92		 75-125	Pass	
Bismuth	M20-JI18805	CP	%	108		 75-125	Pass	
Boron	M20-JI18805	CP	%	93		 75-125	Pass	
Cadmium	M20-JI18805	CP	%	96		 75-125	Pass	
Chromium	M20-JI18805	CP	%	112		75-125	Pass	
Cobalt	M20-JI18805	CP	%	118		75-125	Pass	
Copper	M20-JI18805	CP	%	104		75-125	Pass	
Lead	M20-JI18805	CP	%	110		 75-125	Pass	
Manganese	M20-JI18805	CP	%	125		 75-125	Pass	
Molybdenum	M20-JI18805	CP	%	107		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel	M20-JI18805	CP	%	101			75-125	Pass	
Selenium	M20-JI18805	CP	%	96			75-125	Pass	
Silver	M20-JI18805	CP	%	98			75-125	Pass	
Thallium	M20-JI18805	СР	%	103			75-125	Pass	
Tin	M20-JI18805	CP	%	105			75-125	Pass	
Titanium	M20-JI18805	CP	%	94			75-125	Pass	
Uranium	M20-JI18805	CP	%	107			75-125	Pass	
Vanadium	M20-JI18805	CP	%	115			75-125	Pass	
Zinc	M20-JI18805	CP	%	99			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M20-JI18801	CP	mg/kg	7600	8000	6.0	30%	Pass	
Antimony	M20-JI18801	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	M20-JI18801	CP	mg/kg	59	59	<1	30%	Pass	
Barium	M20-JI18801	CP	mg/kg	65	60	8.0	30%	Pass	
Beryllium	M20-JI18801	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Bismuth	M20-JI18801	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Boron	M20-JI18801	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI18801	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI18801	CP	mg/kg	16	20	26	30%	Pass	
Cobalt	M20-JI18801	CP	mg/kg	7.1	7.5	5.0	30%	Pass	
Copper	M20-JI18801	CP	mg/kg	11	12	7.0	30%	Pass	
Iron	M20-JI18801	CP	mg/kg	19000	20000	3.0	30%	Pass	
Lead	M20-JI18801	CP	mg/kg	19	20	4.0	30%	Pass	
Manganese	M20-JI18801	CP	mg/kg	160	150	4.0	30%	Pass	
Mercury	M20-JI18801	CP	mg/kg	0.2	0.2	1.0	30%	Pass	
Molybdenum	M20-JI18801	CP	mg/kg	< 5	< 5	<1	30%	Pass	
	M20-JI18801		mg/kg	9.4	10	9.0	30%	Pass	
Selenium	M20-JI18801		mg/kg	<2	< 2	<1	30%	Pass	
Silver	M20-JI18801		mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	M20-JI18801		mg/kg	< 10	< 10	<1	30%	Pass	
Titonium	M20-JI18801		mg/kg	< 10	< 10	<1 12	30%	Pass	
Lironium	M20-JI18601		mg/kg	 	94	13	30%	Pass	
Vapadium	M20 II18801		mg/kg	22	< 10 10	11	30%	Pass	
Zinc	M20- II18801		mg/kg	40	30	3.0	30%	Pass	
	1020-3110001		iiig/kg	40	- 55	5.0	3078	1 435	
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M20II18801	CP	ma/ka	1000	850	20	30%	Pass	
Magnesium	M20II18801	CP	ma/ka	1200	1100	2.0	30%	Pass	
Potassium	M20-JI18801	CP	ma/ka	1200	1200	8.0	30%	Pass	
Sodium	M20-JI18801	CP	ma/ka	170	160	3.0	30%	Pass	
Duplicate		0.				0.10	0070	1 400	
Extended Metals Suite				Result 1	Result 2	RPD			
Phosphorus	M20-JI18801	СР	mg/ka	150	150	<1	30%	Pass	
Silicon	M20-JI18801	СР	mg/ka	330	330	<1	30%	Pass	
Sulphur	M20-JI18801	СР	mg/kg	230	110	72	30%	Fail	Q15
Duplicate				· · ·	· ·		• • • •		
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as									
rec.)	M20-JI18802	CP	pH Units	7.2	7.1	pass	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M20-JI18802	CP	mg/kg	1900	1900	1.0	30%	Pass	
Antimony	M20-JI18802	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	M20-JI18802	СР	mg/kg	39	39	1.0	30%	Pass	
Barium	M20-JI18802	CP	mg/kg	26	26	2.0	30%	Pass	
Beryllium	M20-JI18802	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Bismuth	M20-JI18802	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Boron	M20-JI18802	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI18802	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI18802	СР	mg/kg	13	13	<1	30%	Pass	
Cobalt	M20-JI18802	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M20-JI18802	СР	mg/kg	5.2	5.1	2.0	30%	Pass	
Iron	M20-JI18802	СР	mg/kg	21000	20000	<1	30%	Pass	
Lead	M20-JI18802	СР	mg/kg	11	11	2.0	30%	Pass	
Manganese	M20-JI18802	СР	mg/kg	35	34	1.0	30%	Pass	
Mercury	M20-JI18802	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M20-JI18802	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI18802	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	M20-JI18802	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI18802	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Thallium	M20-JI18802	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Tin	M20-JI18802	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Titanium	M20-JI18802	CP	mg/kg	37	37	<1	30%	Pass	
Uranium	M20-JI18802	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	M20-JI18802	CP	mg/kg	22	22	<1	30%	Pass	
Zinc	M20-JI18802	CP	mg/kg	26	26	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M20-JI18803	CP	%	3.5	3.4	5.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M20-JI18804	CP	mg/kg	5500	5200	5.0	30%	Pass	
Antimony	M20-JI18804	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	M20-JI18804	CP	mg/kg	890	930	4.0	30%	Pass	
Barium	M20-JI18804	CP	mg/kg	53	52	2.0	30%	Pass	
Beryllium	M20-JI18804	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Bismuth	M20-JI18804	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Boron	M20-JI18804	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI18804	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI18804	CP	mg/kg	14	13	7.0	30%	Pass	
Cobalt	M20-JI18804	CP	mg/kg	9.4	8.6	8.0	30%	Pass	
Copper	M20-JI18804	CP	mg/kg	21	18	11	30%	Pass	
Iron	M20-JI18804	CP	mg/kg	30000	24000	21	30%	Pass	
Lead	M20-JI18804	CP	mg/kg	100	41	85	30%	Fail	Q15
Manganese	M20-JI18804	CP	mg/kg	230	220	5.0	30%	Pass	
Mercury	M20-JI18804	CP	mg/kg	2.8	3.0	5.0	30%	Pass	
Molybdenum	M20-JI18804	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI18804	CP	mg/kg	15	14	4.0	30%	Pass	
Selenium	M20-JI18804	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI18804	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Thallium	M20-JI18804	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Tin	M20-JI18804	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Titanium	M20-JI18804	CP	mg/kg	45	47	6.0	30%	Pass	
Uranium	M20-JI18804	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	M20-JI18804	CP	mg/kg	18	17	10	30%	Pass	
Zinc	M20-JI18804	CP	mg/kg	65	63	3.0	30%	Pass	

Duplicate									
Heavy Metals	_			Result 1	Result 2	RPD			
Aluminium	M20-JI18805	CP	mg/kg	4900	5000	2.0	30%	Pass	
Antimony	M20-JI18805	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	M20-JI18805	CP	mg/kg	1100	1100	3.0	30%	Pass	
Barium	M20-JI18805	CP	mg/kg	51	53	3.0	30%	Pass	
Beryllium	M20-JI18805	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Bismuth	M20-JI18805	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Boron	M20-JI18805	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-JI18805	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI18805	CP	mg/kg	12	12	3.0	30%	Pass	
Cobalt	M20-JI18805	CP	mg/kg	9.8	10	3.0	30%	Pass	
Copper	M20-JI18805	CP	mg/kg	28	28	2.0	30%	Pass	
Iron	M20-JI18805	CP	mg/kg	23000	23000	3.0	30%	Pass	
Lead	M20-JI18805	CP	mg/kg	44	45	2.0	30%	Pass	
Manganese	M20-JI18805	CP	mg/kg	240	250	4.0	30%	Pass	
Mercury	M20-JI18805	CP	mg/kg	4.1	3.9	5.0	30%	Pass	
Molybdenum	M20-JI18805	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI18805	CP	mg/kg	18	18	2.0	30%	Pass	
Selenium	M20-JI18805	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI18805	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Thallium	M20-JI18805	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Tin	M20-JI18805	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Titanium	M20-JI18805	CP	mg/kg	41	42	2.0	30%	Pass	
Uranium	M20-JI18805	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	M20-JI18805	CP	mg/kg	13	13	3.0	30%	Pass	
Zinc	M20-JI18805	CP	mg/kg	79	81	2.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

- Code Description
- The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.
- Q15 The RPD reported passes Eurofins Environment Testing's QC Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Michael Cassidy Emily Rosenberg Scott Beddoes Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 21808

Client Details	
Client	JBS & G Australia Pty Ltd
Attention	Sequoia Weitman
Address	Level 2, 155 Queen Street, Melbourne, VIC, 3000

Sample Details	
Your Reference	58207 Huntly Common
Number of Samples	1 Soil
Date samples received	13/07/2020
Date completed instructions received	13/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	20/07/2020			
Date of Issue	15/07/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

Acid Extractractable metals in soil		
Our Reference		21808-1
Your Reference	UNITS	Split01
Date Sampled		08/07/2020
Type of sample		Soil
Date digested	-	13/07/2020
Date analysed	-	13/07/2020
Aluminium	mg/kg	5,200
Antimony	mg/kg	<7
Arsenic	mg/kg	830
Barium	mg/kg	53
Beryllium	mg/kg	<1
Bismuth	mg/kg	<1
Boron	mg/kg	<3
Cadmium	mg/kg	3
Chromium	mg/kg	11
Cobalt	mg/kg	7
Copper	mg/kg	19
Iron	mg/kg	23,000
Mercury	mg/kg	2.7
Manganese	mg/kg	240
Molybdenum	mg/kg	<1
Nickel	mg/kg	14
Lead	mg/kg	38
Phosphorus	mg/kg	260
Selenium	mg/kg	<2
Silicon*	mg/kg	130
Silver	mg/kg	<1
Sulphur	mg/kg	230
Tin	mg/kg	3
Thallium	mg/kg	<2
Titanium	mg/kg	9
Uranium	mg/kg	1
Vanadium	mg/kg	13
Zinc	mg/kg	64

Cations in soil		
Our Reference		21808-1
Your Reference	UNITS	Split01
Date Sampled		08/07/2020
Type of sample		Soil
Date digested	-	13/07/2020
Date analysed	-	13/07/2020
Calcium	mg/kg	2,900
Potassium	mg/kg	450
Magnesium	mg/kg	2,800
Sodium	mg/kg	110

Moisture		
Our Reference		21808-1
Your Reference	UNITS	Split01
Date Sampled		08/07/2020
Type of sample		Soil
Date prepared	-	13/07/2020
Date analysed	-	14/07/2020
Moisture	%	5.7

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.

QUALITY CONTR	OL: Acid Ext	tractracta	ble metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			13/07/2020	[NT]	[NT]		[NT]	13/07/2020	
Date analysed	-			13/07/2020	[NT]	[NT]		[NT]	13/07/2020	
Aluminium	mg/kg	10	Metals-020 ICP- AES	<10	[NT]	[NT]		[NT]	107	
Antimony	mg/kg	7	Metals-020 ICP- AES	<7	[NT]	[NT]		[NT]	104	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]	[NT]		[NT]	113	
Barium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	106	
Beryllium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	115	
Bismuth	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	107	
Boron	mg/kg	3	Metals-020 ICP- AES	<3	[NT]	[NT]		[NT]	110	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]	[NT]		[NT]	107	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	105	
Cobalt	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	105	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	109	
Iron	mg/kg	10	Metals-020 ICP- AES	<10	[NT]	[NT]		[NT]	105	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]		[NT]	102	
Manganese	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	108	
Molybdenum	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	104	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	104	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]		[NT]	100	
Phosphorus	mg/kg	10	Metals-020 ICP- AES	<10	[NT]	[NT]		[NT]	86	
Selenium	mg/kg	2	Metals-020 ICP- AES	<2	[NT]	[NT]		[NT]	105	

QUALITY CONTROL: Acid Extractractable metals in soil						Duplicate Spike Recor				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Silicon*	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	115	[NT]
Silver	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	98	[NT]
Sulphur	mg/kg	10	Metals-020 ICP- AES	<10	[NT]		[NT]	[NT]	98	[NT]
Tin	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	101	[NT]
Thallium	mg/kg	2	Metals-020 ICP- AES	<2	[NT]		[NT]	[NT]	101	[NT]
Titanium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	105	[NT]
Uranium	mg/kg	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	100	[NT]
Vanadium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	106	[NT]
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	104	[NT]

QUALITY CONTROL: Cations in soil						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date digested	-			13/07/2020	[NT]		[NT]	[NT]	13/07/2020		
Date analysed	-			13/07/2020	[NT]		[NT]	[NT]	13/07/2020		
Calcium	mg/kg	10	Metals-020 ICP- AES	<10	[NT]		[NT]	[NT]	104		
Potassium	mg/kg	10	Metals-020 ICP- AES	<10	[NT]		[NT]	[NT]	95		
Magnesium	mg/kg	10	Metals-020 ICP- AES	<10	[NT]		[NT]	[NT]	92		
Sodium	mg/kg	10	Metals-020 ICP- AES	<10	[NT]	[NT]	[NT]	[NT]	95	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Anna Tuncks

Report Project name Project ID Received Date **731071-S** HUNTLY COMMON 58207 Jul 10, 2020

Client Sample ID			TP02 (<100	TP02 (100-250	TP02 (>250	TP05 (<100
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI18580	M20-JI18581	M20-JI18582	M20-JI18583
Date Sampled					Jul 08 2020	Jul 08 2020
		l loit	001 00, 2020	001 00, 2020	001 00, 2020	our 00, 2020
Test/Reference	LUR	Unit				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.0	7.6	7.5	77
% Moisture	1	%	7.5	-	-	8.7
Particle Size by Sieve analysis*		, •				
<63 Micron	0.1	% w/w	39	-	-	64
>2000 Micron	0.1	% w/w	4.5	-	-	0.5
1000-2000 Micron	0.1	% w/w	2.3	-	-	0.2
125-250 Micron	0.1	% w/w	25	-	-	17
250-500 Micron	0.1	% w/w	8.8	-	-	3.9
500-1000 Micron	0.1	% w/w	5.5	-	-	2.4
63-125 Micron	0.1	% w/w	15	-	-	13
Heavy Metals						
Aluminium	10	mg/kg	4200	4500	4200	6300
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	470	440	290	330
Barium	10	mg/kg	36	38	61	62
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Bismuth	10	mg/kg	< 10	< 10	< 10	< 10
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.1	9.0	10	13
Cobalt	5	mg/kg	5.4	6.3	7.0	7.4
Copper	5	mg/kg	21	18	21	22
Iron	20	mg/kg	18000	17000	20000	18000
Lead	5	mg/kg	26	24	18	23
Manganese	5	mg/kg	180	190	190	200
Mercury	0.1	mg/kg	1.4	1.5	1.0	1.4
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	12	11	11	12
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	10	mg/kg	< 10	< 10	< 10	< 10
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Titanium	10	mg/kg	40	36	40	63
Uranium	10	mg/kg	< 10	< 10	< 10	< 10
Vanadium	10	mg/kg	< 10	10	14	15
Zinc	5	mg/kg	49	43	34	37

Client Sample ID Sample Matrix Eurofins Sample No.			TP02 (<100 um) Soil M20-JI18580	TP02 (100-250 um) Soil M20-JI18581	TP02 (>250 um) Soil M20-JI18582	TP05 (<100 um) Soil M20-JI18583
Date Sampled			Jul 08, 2020	Jul 08, 2020	Jul 08, 2020	Jul 08, 2020
Test/Reference	LOR	Unit				
Alkali Metals						
Calcium	5	mg/kg	2700	2900	3300	2200
Magnesium	5	mg/kg	2900	2100	1700	1500
Potassium	5	mg/kg	410	460	580	730
Sodium	5	mg/kg	65	55	78	64
Extended Metals Suite						
Phosphorus	5	mg/kg	280	200	130	150
Silicon	2	mg/kg	340	250	420	320
Sulphur	5	mg/kg	140	100	1200	88

Client Sample ID			TP05 (100-250	TP05 (>250	TP07 (<100	TP07 (100-250
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI18584	M20-JI18585	M20-JI18586	M20-JI18587
Date Sampled			Jul 08, 2020	Jul 08, 2020	Jul 08, 2020	Jul 08, 2020
Test/Reference	LOP	Linit				
	LOIN	Onit				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.8	7.7	7.4	7.4
% Moisture	1	%	-	-	11	-
Particle Size by Sieve analysis*						
<63 Micron	0.1	% w/w	-	-	18	-
>2000 Micron	0.1	% w/w	-	-	1.6	-
1000-2000 Micron	0.1	% w/w	-	-	0.5	-
125-250 Micron	0.1	% w/w	-	-	46	-
250-500 Micron	0.1	% w/w	-	-	11	-
500-1000 Micron	0.1	% w/w	-	-	5.2	-
63-125 Micron	0.1	% w/w	-	-	17	-
Heavy Metals						
Aluminium	10	mg/kg	7200	8500	4300	2500
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	270	120	730	350
Barium	10	mg/kg	71	120	43	21
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Bismuth	10	mg/kg	< 10	< 10	< 10	< 10
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	14	18	8.6	5.7
Cobalt	5	mg/kg	10	17	5.8	< 5
Copper	5	mg/kg	19	23	29	15
Iron	20	mg/kg	19000	25000	19000	14000
Lead	5	mg/kg	25	30	25	16
Manganese	5	mg/kg	350	1100	230	150
Mercury	0.1	mg/kg	1.1	0.4	1.5	0.8
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	13	14	12	8.5
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	10	mg/kg	< 10	< 10	< 10	< 10
Tin	10	mg/kg	< 10	< 10	< 10	< 10

Client Sample ID			TP05 (100-250 um)	TP05 (>250 um)	TP07 (<100 um)	TP07 (100-250 um)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI18584	M20-JI18585	M20-JI18586	M20-JI18587
Date Sampled			Jul 08, 2020	Jul 08, 2020	Jul 08, 2020	Jul 08, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Titanium	10	mg/kg	55	87	38	24
Uranium	10	mg/kg	< 10	< 10	< 10	< 10
Vanadium	10	mg/kg	18	29	< 10	< 10
Zinc	5	mg/kg	35	29	60	39
Alkali Metals						
Calcium	5	mg/kg	3000	3700	2500	1700
Magnesium	5	mg/kg	1700	1700	3400	2200
Potassium	5	mg/kg	920	1300	390	260
Sodium	5	mg/kg	64	96	32	21
Extended Metals Suite						
Phosphorus	5	mg/kg	150	130	310	230
Silicon	2	mg/kg	200	480	270	260
Sulphur	5	mg/kg	97	120	120	91

Client Sample ID			TP07 (>250
Sample Matrix			Soil
Eurofins Sample No.			M20-JI18588
Date Sampled			Jul 08, 2020
Test/Reference	LOR	Unit	
	•		
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.8
Heavy Metals			
Aluminium	10	mg/kg	1900
Antimony	10	mg/kg	< 10
Arsenic	2	mg/kg	290
Barium	10	mg/kg	17
Beryllium	2	mg/kg	< 2
Bismuth	10	mg/kg	< 10
Boron	10	mg/kg	< 10
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	5.7
Cobalt	5	mg/kg	< 5
Copper	5	mg/kg	13
Iron	20	mg/kg	12000
Lead	5	mg/kg	14
Manganese	5	mg/kg	98
Mercury	0.1	mg/kg	0.7
Molybdenum	5	mg/kg	< 5
Nickel	5	mg/kg	7.8
Selenium	2	mg/kg	< 2
Silver	0.2	mg/kg	< 0.2
Thallium	10	mg/kg	< 10
Tin	10	mg/kg	< 10
Titanium	10	mg/kg	21
Uranium	10	mg/kg	< 10
Vanadium	10	mg/kg	< 10
Zinc	5	mg/kg	35

Client Sample ID Sample Matrix			TP07 (>250 um) Soil
Eurofins Sample No.			M20-JI18588
Date Sampled			Jul 08, 2020
Test/Reference	LOR	Unit	
Alkali Metals			
Calcium	5	mg/kg	1300
Magnesium	5	mg/kg	1000
Potassium	5	mg/kg	200
Sodium	5	mg/kg	20
Extended Metals Suite			
Phosphorus	5	mg/kg	180
Silicon	2	mg/kg	260
Sulphur	5	mg/kg	79

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Jul 16, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Particle Size by Sieve analysis*	Melbourne	Jul 16, 2020	28 Days
- Method: AS1289.C6.1-1977 Determination of Particle Size by Sieving			
Extended Metals Suite	Melbourne	Jul 16, 2020	28 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES			
% Moisture	Melbourne	Jul 10, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

🔅 eurofins 🗆				4	Australia								New Zealand		
ABN -	50 005 085 521	web : www eurofin	Enviro	nment Te	esting ofins.com	Melbour Monter Dandenc Phone : IATA # Site # 12	rne rey Road ong Sou +61 3 85 1261 254 & 14	d th VIC 3 564 500	3175 10	Sydn Unit F 16 Ma Lane Phone NATA	ey 3, Building F trs Road Cove West NSW 2066 e : +61 2 9900 8400 # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: JBS & G Australia (VIC) P/L Address: PO Box 3166 Norwood SA 5067				Order N Report Phone: Fax:			Order No.: Report #: Phone: Fax:		731071 03 9642 0599		Received: Due: Priority: Contact Name:	Jul 10, 2020 2:38 PM Jul 17, 2020 5 Day Anna Tuncks			
Pro Pro	oject Name: oject ID:	HUNTLY CC 58207	OMMON										Eurofins Analytical Ser	rvices Manager : Michae	l Cassidy
		Sa	mple Detail			HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Particle Size by Sieve analysis*	Extended Metals Suite	Moisture Set					
Melk	oourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	X	X	X	X	_				
Syd	ney Laboratory	- NATA Site # 1	8217								_				
Bris	bane Laboratory	/ - NATA Site #	20794								_				
Fxte	ernal Laboratory - N	ATA Sile # 237	30								-				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	TP02 (<100 um)	Jul 08, 2020		Soil	M20-JI18580		x	x	x	x	_				
2	TP02 (100-250 um)	Jul 08, 2020		Soil	M20-JI18581		X		x	x					
3	TP02 (>250 um)	Jul 08, 2020		Soil	M20-JI18582		x		x	x					
4	TP05 (<100 um)	Jul 08, 2020		Soil	M20-JI18583	<u> </u>	x	x	x	x	_				
5	TP05 (100-250 um)	Jul 08, 2020		Soil	M20-JI18584		x		х	Х					
6	TP05 (>250 um)	Jul 08, 2020		Soil	M20-JI18585		x		х	х					

eurofine					ustra	lia							New Zealand	
ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com							d th VIC 3 564 500	0 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7679 Phone : 0800 856 450 IANZ # 1290
Company Name: JBS & G Australia (VIC) P/L Address: PO Box 3166 Norwood SA 5067						Order No.: Report #: Phone: Fax:			731071 03 9642 0599			Received: Due: Priority: Contact Name:	Jul 10, 2020 2:38 Pl Jul 17, 2020 5 Day Anna Tuncks	
Project Name:HUNTLY COMMONProject ID:58207											I	Eurofins Analytical Ser	rvices Manager : Micha	el Cassidy
Sample Detail						pH (1:5 Aqueous extract at 25°C as rec.)	Particle Size by Sieve analysis*	Extended Metals Suite	Moisture Set					
Melbourne Laborato	ry - NATA Site	# 1254 & 142	71		Х	X	X	Х	X	-				
Sydney Laboratory -	NAIA Site # 1	8217								-				
Perth Laboratory - N	ATA Site # 237	736					1			-				
7 TP07 (<100 um)	Jul 08, 2020		Soil	M20-JI18586		x	x	x	x	1				
8 TP07 (100-250 um)	Jul 08, 2020		Soil	M20-JI18587		х		х	x					
9 TP07 (>250 um)	Jul 08, 2020		Soil	M20-JI18588		х		х	х					
10 TB03	Jul 08, 2020		Soil	M20-JI18589	Х					4				
Test Counts	Test Counts							9	9					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Method Blank Image Network Image Net	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals Image Netals	Method Blank					
Aluminium mg/kg <10 Pass Antimony mg/kg <10	Heavy Metals					
Antimony mg/kg < 10 Pass Arsenic mg/kg <2	Aluminium	mg/kg	< 10	10	Pass	
Arsenic mg/kg < 2 2 2 Pass Barium mg/kg <10	Antimony	mg/kg	< 10	10	Pass	
Barium mg/kg < 10 Pass Beryllium mg/kg < 2	Arsenic	mg/kg	< 2	2	Pass	
Beryllium mg/kg <2 2 Pass Bismuth mg/kg <10	Barium	mg/kg	< 10	10	Pass	
Bismuth mg/kg < 10 Pass Boron mg/kg <10	Beryllium	mg/kg	< 2	2	Pass	
Boron mg/kg < 10 Pass Cadmium mg/kg < 0.4	Bismuth	mg/kg	< 10	10	Pass	
Cadmium mg/kg < 0.4 Pass Chromium mg/kg <5	Boron	mg/kg	< 10	10	Pass	
Chromium mg/kg < 5 5 Pass Cobalt mg/kg < 5	Cadmium	mg/kg	< 0.4	0.4	Pass	
Cobalt mg/kg < 5 5 Pass Copper mg/kg < 5	Chromium	mg/kg	< 5	5	Pass	
Copper mg/kg < 5 Pass Iron mg/kg <20	Cobalt	mg/kg	< 5	5	Pass	
Iron mg/kg < 20 20 Pass Lead mg/kg < 5 $<$ 5 Pass Manganese mg/kg < 5 $<$ 5 Pass Mercury mg/kg < 5 $<$ 0.1 Pass Molybdenum mg/kg < 5 $<$ 5 Pass Nickel mg/kg < 5 $<$ 5 Pass Selenium mg/kg < 5 $<$ 5 Pass Silver mg/kg < 2 $<$ 2 Pass Thallium mg/kg < 10 10 Pass Titanium mg/kg < 10 10 Pass Uranium mg/kg < 10 10 Pass Vanadium mg/kg < 10 10 Pass Zinc mg/kg < 10 10 Pass Method Blank 5 5 Pass	Copper	mg/kg	< 5	5	Pass	
Lead mg/kg < 5 5 Pass Manganese mg/kg < 5	Iron	mg/kg	< 20	20	Pass	
Manganese mg/kg < 5 5 Pass Mercury mg/kg < 0.1	Lead	mg/kg	< 5	5	Pass	
Mercury mg/kg < 0.1 Pass Molybdenum mg/kg < 5	Manganese	mg/kg	< 5	5	Pass	
Molybdenum mg/kg < 5 5 Pass Nickel mg/kg < 5	Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel mg/kg < 5 5 Pass Selenium mg/kg <2	Molybdenum	mg/kg	< 5	5	Pass	
Selenium mg/kg < 2 2 Pass Silver mg/kg < 0.2	Nickel	mg/kg	< 5	5	Pass	
Silver mg/kg < 0.2 Pass Thallium mg/kg < 10	Selenium	mg/kg	< 2	2	Pass	
Thallium mg/kg < 10 Pass Tin mg/kg < 10	Silver	mg/kg	< 0.2	0.2	Pass	
Tin mg/kg < 10 Pass Titanium mg/kg < 10	Thallium	mg/kg	< 10	10	Pass	
Titanium mg/kg < 10 Pass Uranium mg/kg < 10	Tin	mg/kg	< 10	10	Pass	
Uranium mg/kg < 10 Pass Vanadium mg/kg < 10	Titanium	mg/kg	< 10	10	Pass	
Vanadium mg/kg < 10 Pass Zinc mg/kg < 5	Uranium	mg/kg	< 10	10	Pass	
Zinc mg/kg < 5 5 Pass Method Blank	Vanadium	mg/kg	< 10	10	Pass	
Method Blank		mg/kg	< 5	5	Pass	
Alkali Metals mg/kg < 5 Pass	Method Blank					
Calcium mg/kg < 5 5 Pass	Alkali Metals	"			-	
		mg/kg	< 5	5	Pass	
Magnesium mg/kg < 5 5 Pass		mg/kg	< 5	5	Pass	
Potassium mg/kg < 5 5 Pass	Potassium	mg/kg	< 5	5	Pass	
Sodium mg/Kg < 5 5 Pass	Sodium Mathed Blank	mg/kg	< 5	5	Pass	
Method Blank	Method Blank			1		
	Extended Metals Suite				Dees	
Priosphorus mg/kg < 5 5 Pass	Cilicon	mg/kg	< 0	5	Pass	
Silicoli Ilig/kg < Z Z FdSS Sulphur mg/kg < 5	Silicon	mg/kg	< 2	5	Pass	
		шу/ку	< 0	5	Fass	
LCS - % Recovery	LCS - % Recovery					
Aluminium % 80 80-120 Pase		0/	80	80-120	Pass	
Addiminian 78 00 00-120 Pass	Antimony	/0 0/	106	80-120	Pass	
Arcenic % 106 80-120 Pass	Arsenic	70 0/	106	80-120	Pass	
Arsenic % 100 00-120 1 ass Barium % 106 80-120 Pass	Barium	70 0/	106	80-120	Pass	
Bandin 70 100 00 120 1 ass	Bervillium	%	Q1	80-120	Pass	
Bismuth % 84 80-120 Pass	Bismuth	%	84	80-120	Pass	
Boron % Q6 80-120 Page	Boron	%	96	80-120	Page	
Cadmium % Q7 80-120 Fass	Cadmium	%	97	80-120	Page	
Outside 70 07 00-120 1 dss Chromium % 82 80-120 Page	Chromium	%	82	80-120	Page	
Cohalt % 84 80-120 Page	Cobalt	%	84	80-120	Page	
Conder 70 04 00-120 1 dss Conder % 86 80-120 Page	Copper	%	88	80-120	Page	
Iron % 85 80-120 Pass	Iron	%	85	80-120	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Lead			%	86			80-120	Pass	
Manganese			%	82			80-120	Pass	
Mercury			%	93			75-125	Pass	
Molybdenum			%	106			80-120	Pass	
Nickel			%	105			80-120	Pass	
Selenium			%	109			80-120	Pass	
Silver			%	99			80-120	Pass	
Thallium			%	108			80-120	Pass	
Tin			%	106			80-120	Pass	
Titanium			%	85			80-120	Pass	
Uranium			%	81			80-120	Pass	
Vanadium			%	80			80-120	Pass	
Zinc	%	105			80-120	Pass			
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance	Pass Limits	Qualifying
Spike - % Recovery		Source					Linits	Linits	Code
Heavy Metals				Result 1					
Aluminium	M20-JI27593	NCP	%	46			75-125	Fail	Q08
Antimony	M20-JI25845	NCP	%	103			70-130	Pass	
Arsenic	M20-JI25845	NCP	%	98			75-125	Pass	
Barium	M20-JI25845	NCP	%	89			75-125	Pass	
Beryllium	M20-JI25845	NCP	%	94			75-125	Pass	
Bismuth	M20-JI25845	NCP	%	105			75-125	Pass	
Boron	M20-JI25845	NCP	%	84			75-125	Pass	
Cadmium	M20-JI25845	NCP	%	97			75-125	Pass	
Chromium	M20-JI25845	NCP	%	100			75-125	Pass	
Cobalt	M20-JI25845	NCP	%	103			75-125	Pass	
Copper	M20-JI25845	NCP	%	98			75-125	Pass	
Lead	M20-JI25845	NCP	%	118			75-125	Pass	
Manganese	M20-JI26213	NCP	%	109			75-125	Pass	
Mercury	M20-JI25845	NCP	%	93			70-130	Pass	
Molybdenum	M20-JI25845	NCP	%	107			75-125	Pass	
Nickel	M20-JI25845	NCP	%	61			75-125	Fail	Q08
Selenium	M20-JI25845	NCP	%	97			75-125	Pass	
Silver	M20-JI25845	NCP	%	100			75-125	Pass	
Thallium	M20-JI25845	NCP	%	98			75-125	Pass	
Tin	M20-JI25845	NCP	%	105			75-125	Pass	
Uranium	M20-JI25845	NCP	%	103			75-125	Pass	
Vanadium	M20-JI25845	NCP	%	113			75-125	Pass	
Zinc	M20-JI25845	NCP	%	87			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	·								
	1			Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	M20-JI26917	NCP	pH Units	7.9	7.9	pass	30%	Pass	
% Moisture	B20-JI28488	NCP	%	1.8	1.8	<1	30%	Pass	
Duplicate					1		1	-	
Heavy Metals		1		Result 1	Result 2	RPD			
Aluminium	M20-JI25057	NCP	mg/kg	9100	9900	9.0	30%	Pass	
Antimony	M20-JI25844	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	M20-JI25844	NCP	mg/kg	2.6	4.3	49	30%	Fail	Q15
Barium	M20-JI25844	NCP	mg/kg	120	110	12	30%	Pass	
Beryllium	M20-JI25844	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Bismuth	M20-JI25844	NCP	mg/kg	< 10	< 10	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Boron	M20-JI25844	NCP	mg/kg	11	10	10	30%	Pass	
Cadmium	M20-JI25844	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-JI25844	NCP	mg/kg	35	39	12	30%	Pass	
Cobalt	M20-JI25844	NCP	mg/kg	26	24	10	30%	Pass	
Copper	M20-JI25844	NCP	mg/kg	39	34	13	30%	Pass	
Iron	M20-JI25057	NCP	mg/kg	6300	5000	22	30%	Pass	
Lead	M20-JI25844	NCP	mg/kg	140	100	30	30%	Pass	
Manganese	M20-JI25844	NCP	mg/kg	620	540	14	30%	Pass	
Mercury	M20-JI25844	NCP	mg/kg	0.3	0.4	45	30%	Fail	Q15
Molybdenum	M20-JI25844	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-JI25844	NCP	mg/kg	110	99	7.0	30%	Pass	
Selenium	M20-JI25844	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-JI25844	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Thallium	M20-JI25844	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Tin	M20-JI25844	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Titanium	M20-JI25844	NCP	mg/kg	840	790	6.0	30%	Pass	
Uranium	M20-JI25844	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	M20-JI25844	NCP	mg/kg	35	61	55	30%	Fail	Q15
Zinc	M20-JI25844	NCP	mg/kg	98	83	17	30%	Pass	
Duplicate					1		.		
Alkali Metals	1			Result 1	Result 2	RPD			
Calcium	B20-JI28488	NCP	mg/kg	340	350	4.0	30%	Pass	
Magnesium	B20-JI28488	NCP	mg/kg	250	250	2.0	30%	Pass	
Potassium	B20-JI28488	NCP	mg/kg	520	530	2.0	30%	Pass	
Sodium	B20-JI28488	NCP	mg/kg	26	26	2.0	30%	Pass	
Duplicate				T		_	-		
Extended Metals Suite	Γ			Result 1	Result 2	RPD			
Phosphorus	B20-JI28488	NCP	mg/kg	59	59	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

- Code Description
- Cost The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Michael Cassidy Emily Rosenberg Scott Beddoes Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067

Anna Tuncks

Report
Project name
Project ID
Received Date

Attention:

733690-L HUNTLY COMMON 58207 Jul 23, 2020

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			TP07(<100 um)	TP07(<100-250 um)	TP03-0.4	TP02-2.4
Sample Matrix			AUS Leachate	AUS Leachate	AUS Leachate	AUS Leachate
Eurofins Sample No.			M20-JI39384	M20-JI39385	M20-JI39387	M20-JI39388
Date Sampled			Jul 09, 2020	Jul 09, 2020	Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	0.01	mg/L	0.59	0.47	0.37	0.23
AUS Leaching Procedure	-					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	6.8	6.8	5.8	5.7
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.1	5.1	5.2	5.2

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP08-0.7 AUS Leachate M20-JI39389 Jul 09, 2020	TP05(<100 um) AUS Leachate M20-JI39390 Jul 09, 2020	TP05(<100-250 um) AUS Leachate M20-JI39391 Jul 09, 2020
Test/Reference	LOR	Unit			
Heavy Metals					
Chromium	0.01	mg/L	0.01	< 0.01	< 0.01
AUS Leaching Procedure					
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	7.3	6.7	6.9
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.3	5.1	5.1
Chromium (hexavalent)	0.05	mg/L	< 0.05	< 0.05	< 0.05
Chromium (trivalent)	0.05	mg/L	< 0.05	< 0.05	< 0.05

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Jul 29, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
AUS Leaching Procedure			
pH (initial)	Melbourne	Jul 29, 2020	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
pH (Leachate fluid)	Melbourne	Jul 29, 2020	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
pH (off)	Melbourne	Jul 29, 2020	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
Chromium (speciated)			
Chromium (hexavalent)	Melbourne	Jul 28, 2020	28 Days
- Method: APHA 3500-Cr Hexavalent Chromium- (Extraction:- LISEPA3060)			

		fine	4	ustra	lia								New Zealand			
ABN -	50 005 085 521	esting ofins.com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271				Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217			Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
Co Ad	Company Name: JBS & G Australia (VIC) P/L Address: PO Box 3166 Norwood SA 5067				Order No.: Report #: Phone: Fax:			7 0	7336 03 90	90 642 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 PM Jul 30, 2020 5 Day Anna Tuncks	1		
Pro Pro	oject Name: oject ID:	HUNTLY CO 58207	MMON										I	Eurofins Analytical Ser	rvices Manager : Michae	el Cassidy
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Melk	oourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	X	х	x	x	X	_				
Syd	ney Laboratory	- NATA Site # 1	8217													
Bris	bane Laborator	y - NATA Site #	20794									_				
Pert	h Laboratory - N	ATA Site # 237	36									_				
Exte No	ernal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID							_				
1	TP08-0.7	Jul 09, 2020		Soil	M20-JI39368					x	X					
2	TP05(<100 um)	Jul 09, 2020		Soil	M20-JI39369					x	х					
3	TP05(<100- 250 um)	Jul 09, 2020		Soil	M20-JI39370					x	x					
4	TP05(>250 um)	Jul 09, 2020		Soil	M20-JI39371					x	x					
5	DS-01	Jul 09, 2020		Soil	M20-JI39372	<u> </u>		Х			X					
6	MS-01	Jul 09, 2020		Soil	M20-JI39373	<u> </u>		Х			X					
7	US-01	Jul 09, 2020		Soil	M20-JI39374	<u> </u>		Х			X					
8	TP08-0.7	Jul 09, 2020		Soil	M20-JI39375			Х			Х					

🔅 eurofins 🗆							ia								New Zealand	
ABN -	50 005 085 521	web : www.eurofin	Enviroi ns.com.au e.ma	nment Te ail : EnviroSales@euro	esting ofins.com	Melbour Monter Dandence Phone : - NATA # Site # 12	ne ey Road ng Sout ⊧61 3 85 1261 54 & 142	I h VIC 3 64 500 271	3175 10	Sydney Unit F3 16 Mar Lane C Phone NATA	/ , Build s Road ove W : +61 2 # 1261	ing F d lest NSW 2066 2 9900 8400 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
Co Ao	ompany Name: JBS & G Australia (VIC) P/L ddress: PO Box 3166 Norwood SA 5067				Order No.: Report #: Phone: Fax:			733690 03 9642 0599		90 342 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 PM Jul 30, 2020 5 Day Anna Tuncks			
Pr Pr	oject Name: oject ID:	HUNTLY CO 58207	DMMON										1	Eurofins Analytical Ser	vices Manager : Michae	l Cassidy
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271		X	X	Х	X	X	X	_				
Bris	hane Laboratory	- NATA Site # 1	20794									_				
Pert	h Laboratory - N	NATA Site # 23	736									_				
9	TP03-0.4	Jul 09, 2020		Soil	M20-JI39376			Х			Х					
10	TP06-0.5	Jul 09, 2020		Soil	M20-JI39377			Х			X	_				
11	TP07(<100 um)	Jul 09, 2020		Soil	M20-JI39378			х			х					
12	TP07(<100- 250 um)	Jul 09, 2020		Soil	M20-JI39379			х			х					
13	TP07(>250 um)	Jul 09, 2020		Soil	M20-JI39380			х			х					
14	TP05(<100 um)	Jul 09, 2020		Soil	M20-JI39381			х			х					
15	TP05(<100- 250 um)	Jul 09, 2020		Soil	M20-JI39382			х			х					
16	TP05(>250 um)	Jul 09, 2020		Soil	M20-JI39383			х			х					
17	TP07(<100	Jul 09, 2020		AUS Leachate	M20-JI39384	Х			Х							

eurofine				Australia									New Zealand			
ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com			Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			3175 10	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		ing F 1 est NSW 2066 2 9900 8400 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: - k61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
C	ompany Name: ddress:	JBS & G Au PO Box 316 Norwood SA 5067	stralia (VIC) P, 66	/L			O Re Pl Fa	rder I eport hone: ax:	No.: #:	7 0	73369)3 96	90 642 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 PM Jul 30, 2020 5 Day Anna Tuncks	
Pi Pi	oject Name: oject ID:	HUNTLY CO 58207	OMMON										E	Eurofins Analytical Se	rvices Manager : Michae	el Cassidy
		Sa	ample Detail			Arsenic	CANCELLED	Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Mel	bourne Laborato	ory - NATA Site	e # 1254 & 142	:71		X	X	X	X	X	X	_				
Syc	ney Laboratory		18217									-				
Per	th Laboratory - N	JATA Site # 23	+ 20794 736									-				
17	TP07(<100 um)	Jul 09, 2020		AUS Leachate	M20-JI39384											
18	TP07(<100- 250 um)	Jul 09, 2020		AUS Leachate	M20-JI39385	x			x							
19	TP07(>250 um)	Jul 09, 2020		AUS Leachate	M20-JI39386		x									
20	TP03-0.4	Jul 09, 2020		AUS Leachate	M20-JI39387	X			X			_				
21	TP02-2.4	Jul 09, 2020		AUS Leachate	M20-JI39388	X		 	X			4				
22	TP08-0.7	Jul 09, 2020		AUS Leachate	M20-JI39389				X	X		4				
23	TP05(<100 um)	Jul 09, 2020		AUS Leachate	M20-JI39390				x	х		_				
24	TP05(<100- 250 um)	Jul 09, 2020		AUS Leachate	M20-JI39391				x	x		_				
25	TP05(>250 um)	Jul 09, 2020		AUS Leachate	M20-JI39392		x									

			Australia							New Zealand		
ABN - 50 005 085 521	web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com	Melbou 6 Monte Danden Phone : NATA # Site # 12	rey Roa ong Sou +61 3 8 1261 254 & 14	d th VIC 3 564 500	3175)0	Sydney Unit F3 16 Mar Lane C Phone NATA #	y s, Building s Road ove West : +61 2 99 # 1261 Sit	F NSW 2066 900 8400 te # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067		O R F	rder I eport hone: ax:	No.: : #:	7	733690)3 9642	2 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 P Jul 30, 2020 5 Day Anna Tuncks	М
Project Name:HUNTLY COMMONProject ID:58207			Eurofins Analytical				Eurofins Analytical Se	Services Manager : Michael Cassidy				
	Sample Detail	Arsenic	CANCELLED	Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Melbourne Laborato	ory - NATA Site # 1254 & 14271	Х	Х	Х	Х	Х	Х					
Sydney Laboratory	- NATA Site # 18217											
Brisbane Laborator	y - NATA Site # 20794											
Perth Laboratory - N	NATA Site # 23736											
Test Counts		4	2	12	7	7	16					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.01			0.01	Pass	
Chromium	r		mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M20-JI47739	NCP	%	106			75-125	Pass	
Spike - % Recovery				1	r				
Heavy Metals	1			Result 1					
Chromium	M20-JI43690	NCP	%	99			75-125	Pass	
Spike - % Recovery				1	r				
				Result 1					
Chromium (hexavalent)	S20-JI46286	NCP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M20-JI47739	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1					
Heavy Metals				Result 1	Result 2	RPD			
Chromium	M20-JI43690	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1					
	1			Result 1	Result 2	RPD			
Chromium (hexavalent)	M20-JI41728	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

 Code
 Description

 C01
 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Michael Cassidy Emily Rosenberg Scott Beddoes Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Anna Tuncks

Report Project name Project ID Received Date 733690-S HUNTLY COMMON 58207 Jul 23, 2020

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP08-0.7 Soil M20-JI39368 Jul 09, 2020	TP05(<100 um) Soil M20-JI39369 Jul 09, 2020	TP05(<100-250 um) Soil M20-JI39370 Jul 09, 2020	TP05(>250 um) Soil M20-JI39371 Jul 09, 2020
Test/Reference	LOR	Unit				
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
Chromium (trivalent)	5	mg/kg	21	13	12	12
% Moisture	1	%	12	7.6	7.7	7.6
Heavy Metals						
Chromium	5	mg/kg	21	13	12	12

Client Sample ID			DS-01	MS-01	US-01	TP08-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI39372	M20-JI39373	M20-JI39374	M20-JI39375
Date Sampled			Jul 09, 2020	Jul 09, 2020	Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	16	20	24	13
Total Organic Carbon	0.1	%	0.5	0.7	0.6	0.2

Client Sample ID			TP03-0.4	TP06-0.5	TP07(<100 um)	TP07(<100-250 um)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-JI39376	M20-JI39377	M20-JI39378	M20-JI39379
Date Sampled			Jul 09, 2020	Jul 09, 2020	Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	22	4.0	16	3.9
Total Organic Carbon	0.1	%	0.5	< 0.1	0.4	0.4

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP07(>250 um) Soil M20-JI39380 Jul 09, 2020	TP05(<100 um) Soil M20-JI39381 Jul 09, 2020	TP05(<100-250 um) Soil M20-JI39382 Jul 09, 2020	TP05(>250 um) Soil M20-JI39383 Jul 09, 2020
Test/Reference	LOR	Unit				
% Moisture	1	%	5.5	6.2	5.9	6.4
Total Organic Carbon	0.1	%	0.5	0.3	0.3	0.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (speciated)			
Chromium (hexavalent)	Melbourne	Jul 28, 2020	28 Days
- Method: APHA 3500-Cr Hexavalent Chromium- (Extraction:- USEPA3060)			
Heavy Metals	Melbourne	Jul 28, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Jul 23, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Total Organic Carbon	Melbourne	Jul 30, 2020	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			

🔅 eurofins 🗆					Australia									New Zealand		
ABN -	N - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com					Melbour Monter Dandenc Phone : - NATA # Site # 12	ne rey Roac ong Sout +61 3 85 1261 54 & 14	d th VIC 3 564 500 271	3175 10	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		ing F J /est NSW 2066 2 9900 8400 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
Co Ad	ompany Name: Idress:	JBS & G Aus PO Box 3166 Norwood SA 5067	stralia (VIC) P 6	ν/L			O Re Pi Fa	rder I eport hone: ax:	No.: #:	7	7336)3 96	90 642 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 PM Jul 30, 2020 5 Day Anna Tuncks	1
Pro Pro	oject Name: oject ID:	HUNTLY CC 58207	MMON										I	Eurofins Analytical Ser	rvices Manager : Michae	el Cassidy
		Sa	mple Detail			Arsenic	CANCELLED	Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Melk	oourne Laborate	ory - NATA Site	# 1254 & 142	271		X	X	х	X	X	Х	_				
Sydi	ney Laboratory	- NATA Site # 1	8217			_						_				
Bris	bane Laborator	y - NATA Site #	20794			_						_				
Pert	h Laboratory - N	NATA Site # 237	/36			-						_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	TP08-0.7	Jul 09, 2020		Soil	M20-JI39368					Х	Х					
2	TP05(<100 um)	Jul 09, 2020		Soil	M20-JI39369					х	х					
3	TP05(<100- 250 um)	Jul 09, 2020		Soil	M20-JI39370					х	x					
4	TP05(>250 um)	Jul 09, 2020		Soil	M20-JI39371					х	x					
5	DS-01	Jul 09, 2020		Soil	M20-JI39372		-	X	<u> </u>	-	Х	_				
6	MS-01	Jul 09, 2020		Soil	M20-JI39373		-	X	<u> </u>	-	Х	_				
7	US-01	Jul 09, 2020		Soil	M20-JI39374			X	 		Х	_				
8	TP08-0.7	Jul 09, 2020		Soil	M20-JI39375			Х			Х					

🔅 eurofins 🛛					4	Australia									New Zealand	
ABN	Environment Testing BN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com					Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			3175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		ling F d Vest NSW 2066 2 9900 8400 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
C A	ompany Name: ddress:	JBS & G Au PO Box 316 Norwood SA 5067	stralia (VIC) P. 6	/L			Oi Re Pi Fa	rder N eport none: ax:	No.: #:	7 0	7336)3 96	90 642 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 PM Jul 30, 2020 5 Day Anna Tuncks	
Pi Pi	oject Name: oject ID:	HUNTLY CO 58207	DMMON										1	Eurofins Analytical Ser	vices Manager : Michae	l Cassidy
		Sa	ample Detail			Arsenic	CANCELLED	Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Mel	bourne Laborato	ory - NATA Site	# 1254 & 142	.71		X	X	X	X	X	X	_				
Syc	hey Laboratory		18217 + 20797									-				
Per	th Laboratory - N	VATA Site # 23	736									-				
9	TP03-0.4	Jul 09, 2020		Soil	M20-JI39376			Х			х					
10	TP06-0.5	Jul 09, 2020		Soil	M20-JI39377			х			Х					
11	TP07(<100 um)	Jul 09, 2020		Soil	M20-JI39378			х			х					
12	TP07(<100- 250 um)	Jul 09, 2020		Soil	M20-JI39379			х			х					
13	TP07(>250 um)	Jul 09, 2020		Soil	M20-JI39380			x			x					
14	TP05(<100 um)	Jul 09, 2020		Soil	M20-JI39381			х			x					
15	TP05(<100- 250 um)	Jul 09, 2020		Soil	M20-JI39382			х			х					
16	TP05(>250 um)	Jul 09, 2020		Soil	M20-JI39383			х			х					
17	TP07(<100	Jul 09, 2020		AUS Leachate	M20-JI39384	Х			Х							

🔅 eurofins 🗆					/	Australia									New Zealand	
ABN -	50 005 085 521	web : www.eurofin	Enviror Is.com.au e.ma	nment Te	esting ofins.com	Melbourn 6 Monter Dandeno Phone : 4 NATA # 1 Site # 12	ne ey Roac ng Sout +61 3 85 1261 54 & 14	d th VIC 3 564 500 271	3175 10	Sydney Unit F3 16 Mars Lane C Phone NATA #	y s, Build s Roa ove V : +61 # 126	ding F Id Vest NSW 2066 2 9900 8400 1 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: JBS & G Australia (VIC Address: PO Box 3166 Norwood SA 5067		stralia (VIC) P/ 6	Ĺ			Oi Re Pi Fa	rder N eport hone: ax:	No.: #:	7	7336 03 9(90 642 0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 PM Jul 30, 2020 5 Day Anna Tuncks		
Pro Pro	oject Name: oject ID:	HUNTLY CO 58207	DMMON										I	Eurofins Analytical Se	rvices Manager : Michae	l Cassidy
		Sa	mple Detail			Arsenic	CANCELLED	Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Melt	ourne Laborato	ory - NATA Site	# 1254 & 142	71		X	X	Х	X	X	X					
Bris	hane Laboratory	- NATA Site # 1	20794						-			_				
Pert	h Laboratory - N	NATA Site # 237	736								1					
17	TP07(<100 um)	Jul 09, 2020		AUS Leachate	M20-JI39384											
18	TP07(<100- 250 um)	Jul 09, 2020		AUS Leachate	M20-JI39385	x			x							
19	TP07(>250 um)	Jul 09, 2020		AUS Leachate	M20-JI39386		x									
20	TP03-0.4	Jul 09, 2020		AUS Leachate	M20-JI39387	X			X			_				
21	TP02-2.4	Jul 09, 2020		AUS Leachate	M20-JI39388	X			X							
22	TP08-0.7	Jul 09, 2020		AUS Leachate	M20-JI39389	1			X	X	<u> </u>	_				
23	TP05(<100 um)	Jul 09, 2020		AUS Leachate	M20-JI39390				x	x						
24	TP05(<100- 250 um)	Jul 09, 2020		AUS Leachate	M20-JI39391				x	х						
25	TP05(>250 um)	Jul 09, 2020		AUS Leachate	M20-JI39392		X									

	Austra	Australia								New Zealand		
ABN - 50 005 085 521	BN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com			Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone: 0800 856 450 IANZ # 1290
Company Name: Address:	JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067		O R F	rder I eport hone: ax:	No.: #:	7	733690)3 9642	0599		Received: Due: Priority: Contact Name:	Jul 23, 2020 5:15 Pl Jul 30, 2020 5 Day Anna Tuncks	vi
Project Name: Project ID:	HUNTLY COMMON 58207									Eurofins Analytical Se	rvices Manager : Micha	el Cassidy
	Sample Detail	Arsenic	CANCELLED	Total Organic Carbon	AUS Leaching Procedure	Chromium (speciated)	Moisture Set					
Melbourne Laborato	ory - NATA Site # 1254 & 14271	Х	Х	Х	Х	Х	х					
Sydney Laboratory	- NATA Site # 18217											
Brisbane Laboratory	y - NATA Site # 20794											
Perth Laboratory - N	IATA Site # 23736											
Test Counts		4	2	12	7	7	16					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank									
Chromium (hexavalent)			mg/kg	< 1			1	Pass	
Total Organic Carbon			%	< 0.1			0.1	Pass	
Method Blank									
Heavy Metals									
Chromium			mg/kg	< 5			5	Pass	
LCS - % Recovery				-					
Chromium (hexavalent)			%	99			70-130	Pass	
Total Organic Carbon			%	104			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Chromium			%	84			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Chromium	M20-JI38728	NCP	%	83			75-125	Pass	
Spike - % Recovery									
				Result 1					
Chromium (hexavalent)	M20-JI39371	CP	%	82			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	M20-JI40674	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium	M20-JI37762	NCP	mg/kg	20	21	5.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M20-JI39375	CP	%	13	13	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Organic Carbon	M20-JI39383	CP	%	0.4	0.4	6.1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Michael Cassidy Emily Rosenberg Scott Beddoes Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

h

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067 Hac-MRA

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Anna Tuncks

Report Project name Project ID Received Date **737860-L** HUNTLY COMMON 58207 Aug 14, 2020

Client Sample ID			^{G01} TP02-3.0	^{G01} TP04-2.1
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M20-Au20869	M20-Au20870
Date Sampled			Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Aluminium	0.05	mg/L	0.22	0.25
Antimony	0.05	mg/L	< 0.05	< 0.05
Arsenic	0.01	mg/L	< 0.01	< 0.01
Barium	0.5	mg/L	< 0.5	< 0.5
Beryllium	0.01	mg/L	< 0.01	< 0.01
Bismuth	0.005	mg/L	< 0.005	< 0.005
Boron	0.05	mg/L	< 1	< 1
Cadmium	0.01	mg/L	< 0.01	< 0.01
Chromium	0.01	mg/L	< 0.01	< 0.01
Cobalt	0.01	mg/L	< 0.01	< 0.01
Copper	0.01	mg/L	< 0.01	< 0.01
Iron	0.01	mg/L	0.17	0.16
Lead	0.01	mg/L	< 0.01	< 0.01
Manganese	0.05	mg/L	< 0.05	< 0.05
Mercury	0.001	mg/L	< 0.001	< 0.001
Molybdenum	0.01	mg/L	< 0.01	< 0.01
Nickel	0.01	mg/L	< 0.01	< 0.01
Selenium	0.05	mg/L	< 0.05	< 0.05
Silver	0.05	mg/L	< 0.05	< 0.05
Thallium	0.05	mg/L	< 0.05	< 0.05
Tin	0.05	mg/L	< 0.05	< 0.05
Titanium	0.05	mg/L	< 0.05	< 0.05
Uranium	0.005	mg/L	< 0.005	< 0.005
Vanadium	0.05	mg/L	< 0.05	< 0.05
Zinc	0.01	mg/L	0.10	0.09
Alkali Metals				
Calcium	0.5	mg/L	< 20	< 20
Magnesium	0.5	mg/L	< 20	< 20
Potassium	0.5	mg/L	< 10	< 10
Extended Metals Suite				
Phosphorus	0.5	mg/L	< 10	< 10
Silicon	0.5	mg/L	< 10	< 10
Sulphur	0.5	mg/L	< 10	< 10

Client Sample ID			^{G01} TP02-3.0	^{G01} TP04-2.1
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M20-Au20869	M20-Au20870
Date Sampled			Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit		
AUS Leaching Procedure				
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (Leachate fluid)	0.1	pH Units	5.1	5.1
pH (off)	0.1	pH Units	5.1	5.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Extended Metals Suite	Melbourne	Aug 14, 2020	28 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES			
AUS Leaching Procedure			
pH (Leachate fluid)	Melbourne	Aug 14, 2020	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
pH (off)	Melbourne	Aug 14, 2020	0 Days
Mathed: LTM CEN 7010 Leaphing Drapadure for Saile & Salid Wester			

Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes

🔅 eurofin		15		A	ustralia		New Zealand							
ABN: 5	005 085 521 web: v			Testing 6 D Sequencing com 9	lelbourne Monterey Road vandenong South VIC 3 hone : +61 3 8564 5000 IATA # 1261 iire # 1254 & 14271	S U 175 1) L P	bydney Init F3, I 6 Mars ane Cov hone : -	Building Road /e West -61 2 99	W 2066 8400 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ADN. J	003 003 321 Web.	www.euronnis.com.a			110 # 1234 & 14271	1		1201 31	10217		Sile # 23730			
Company Name: JBS & G Australia (VIC) P/L Address: PO Box 3166 Norwood SA 5067		/L			O Ri Pi Fa	rder I eport hone: ax:	:	737860 03 9642 0599		Received: Due: Priority: Contact Name:	Aug 14, 2020 10:46 Aug 21, 2020 5 Day Anna Tuncks	5 AM		
Project Name:HUNTLY COMMONProject ID:58207										Eu	rofins Analytical Serv	rices Manager : Michael Cassidy		
Sample Detail						AUS Leaching Procedure	Extended Metals Suite	Moisture Set						
Melb	ourne Laborato	ory - NATA Site	e # 1254 & 142	271		Х	X	Х						
Sydr	ey Laboratory	- NATA Site #	18217											
Brist	bane Laboratory	y - NATA Site #	# 20794 726											
Nov	Laboratory - N	IATA Site # 23	130											
External Laboratory														
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID									
1	TP02-3.0	Jul 09, 2020		Soil	M20-Au20867		X	Х						
2	TP04-2.1	Jul 09, 2020		Soil	M20-Au20868		х	Х						
3	TP02-3.0	Jul 09, 2020		AUS Leachate - pH 5.0	M20-Au20869	х	х							
4	TP04-2.1	Jul 09, 2020		AUS Leachate - pH 5.0	M20-Au20870	х	x							
Test	Counts					2	4	2						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

rerms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Heavy Metals									
Aluminium			mg/L	< 0.05			0.05	Pass	
Antimony			mg/L	< 0.05			0.05	Pass	
Arsenic			mg/L	< 0.01			0.01	Pass	
Barium			mg/L	< 0.5			0.5	Pass	
Beryllium			mg/L	< 0.01			0.01	Pass	
Bismuth			mg/L	< 0.005			0.005	Pass	
Boron			mg/L	< 0.05			0.05	Pass	
Cadmium			mg/L	< 0.01			0.01	Pass	
Chromium			mg/L	< 0.01			0.01	Pass	
Cobalt			mg/L	< 0.01			0.01	Pass	
Copper			mg/L	< 0.01			0.01	Pass	
Iron			mg/L	< 0.01			0.01	Pass	
Lead			mg/L	< 0.01			0.01	Pass	
Manganese			mg/L	< 0.05			0.05	Pass	
Mercury			mg/L	< 0.001			0.001	Pass	
Molybdenum			mg/L	< 0.01			0.01	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Selenium			ma/L	< 0.05			0.05	Pass	
Silver			ma/L	< 0.05			0.05	Pass	
Thallium			ma/L	< 0.05			0.05	Pass	
Tin			ma/l	< 0.05			0.05	Pass	
Titanium			ma/l	< 0.05			0.05	Pass	
Uranium			ma/l	< 0.005			0.005	Pass	
Vanadium			ma/l	< 0.05			0.05	Pass	
Zinc			mg/L	< 0.00			0.00	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance	Pass Limits	Qualifying
Spike - % Recovery		oouroe				L	Ellinto	Emito	0000
Heavy Metals				Result 1					
Aluminium	M20-Au20818	NCP	%	93			75-125	Pass	
Antimony	M20-Au20818	NCP	%	94			75-125	Pass	
Arsenic	M20-Au20818	NCP	%	97			75-125	Pass	
Barium	M20-Au20818	NCP	%	92			75-125	Pass	
Bervllium	M20-Au20818	NCP	%	93			75-125	Pass	
Bismuth	M20-Au20818	NCP	%	99			75-125	Pass	
Cadmium	M20-Au20818	NCP	%	96			75-125	Pass	
Chromium	M20-Au20818	NCP	%	96			75-125	Pass	
Cobalt	M20-Au20818	NCP	%	95			75-125	Pass	
Copper	M20-Au20818	NCP	%	95			75-125	Pass	
Iron	M20-Au20818	NCP	%	99			75-125	Pass	
Lead	M20-Au20818	NCP	%	93			75-125	Pass	
Manganese	M20-Au20818	NCP	%	95			75-125	Pass	
Mercury	M20-Au20818	NCP	%	96		L	75-125	Pass	
Molybdenum	M20-Au20818	NCP	%	97			75-125	Pass	
Nickel	M20-Au20010	NCP	%	94		L	75-125	Pass	
Selenium	M20-Au20010	NCP	%	94			75-125	Pass	
Silver	M20-Au20010	NCP	%	89			75-125	Pass	
Thallium	M20-Au20010	NCP	%	97			75-125	Pass	
Tin	M20-Au20018	NCP	%	93			75-125	Pass	
Titanium	M20-Au20018	NCP	%	96			75-125	Pass	
					I		10120	1 400	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Uranium	M20-Au20818	NCP	%	99			75-125	Pass	
Vanadium	M20-Au20818	NCP	%	99			75-125	Pass	
Zinc	M20-Au20818	NCP	%	96			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1			1		
Heavy Metals	1			Result 1	Result 2	RPD			
Aluminium	M20-Au20818	NCP	mg/L	0.42	0.35	18	30%	Pass	
Antimony	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	M20-Au20818	NCP	mg/L	0.04	0.04	3.0	30%	Pass	
Barium	M20-Au20818	NCP	mg/L	0.5	0.5	2.0	30%	Pass	
Beryllium	M20-Au20818	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Bismuth	M20-Au20818	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cadmium	M20-Au20818	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chromium	M20-Au20818	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cobalt	M20-Au20818	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Copper	M20-Au20818	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Iron	M20-Au20818	NCP	mg/L	0.08	0.09	6.0	30%	Pass	
Lead	M20-Au20818	NCP	mg/L	0.03	0.03	3.0	30%	Pass	
Manganese	M20-Au20818	NCP	mg/L	0.19	0.18	3.0	30%	Pass	
Mercury	M20-Au20818	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Molybdenum	M20-Au20818	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Nickel	M20-Au20818	NCP	mg/L	0.02	0.02	6.0	30%	Pass	
Selenium	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Silver	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Thallium	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Tin	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Titanium	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Uranium	M20-Au20818	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vanadium	M20-Au20818	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Zinc	M20-Au20818	NCP	mg/L	0.33	0.33	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
C01	Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other
G01	The LORs have been raised due to matrix interference

Authorised By

Michael Cassidy Emily Rosenberg Analytical Services Manager Senior Analyst-Metal (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Anna Tuncks

Report Project name Project ID Received Date **737860-S** HUNTLY COMMON 58207 Aug 14, 2020

Client Sample ID			TP02-3.0	TP04-2.1
Sample Matrix			Soil	Soil
Eurofins Sample No.			M20-Au20867	M20-Au20868
Date Sampled			Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Aluminium	10	mg/kg	7100	13000
Antimony	10	mg/kg	< 10	< 10
Arsenic	2	mg/kg	70	32
Barium	10	mg/kg	71	30
Beryllium	2	mg/kg	< 2	< 2
Bismuth	10	mg/kg	< 10	< 10
Boron	10	mg/kg	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	13	20
Cobalt	5	mg/kg	7.6	< 5
Copper	5	mg/kg	12	10
Iron	20	mg/kg	20000	21000
Lead	5	mg/kg	13	15
Manganese	5	mg/kg	180	37
Mercury	0.1	mg/kg	0.2	< 0.1
Molybdenum	5	mg/kg	< 5	< 5
Nickel	5	mg/kg	9.1	6.6
Selenium	2	mg/kg	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2
Thallium	10	mg/kg	< 10	< 10
Tin	10	mg/kg	< 10	< 10
Titanium	10	mg/kg	54	96
Uranium	10	mg/kg	< 10	< 10
Vanadium	10	mg/kg	17	30
Zinc	5	mg/kg	22	16
Alkali Metals				
Calcium	5	mg/kg	810	670
Magnesium	5	mg/kg	1700	1800
Potassium	5	mg/kg	760	1200
Sodium	5	mg/kg	460	580
Extended Metals Suite				
Phosphorus	5	mg/kg	120	82
Sulphur	5	mg/kg	500	170
% Moisture	1	%	10	9.8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Extended Metals Suite	Melbourne	Aug 14, 2020	28 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES			
% Moisture	Melbourne	Aug 14, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN: 50 005 085 521 web; www.eurofins.c		ns	S Environment Testing		Australia		New Zealand						
		www.eurofins.com.a			Melbourne 6 Monterey Road Dandenong South VIC 317 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271		bydney Init F3, E 6 Mars F ane Cov Phone : + IATA # 1	Building Road ve West -61 2 99	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 2066 Phone : +61 7 3902 4600 0 NATA # 1261 Site # 2079-217	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067Project Name: Project ID:HUNTLY COMMON 58207			/L			Oi Re Pi Fa	rder N eport none: ax:	737860 03 9642 0599		Received: Due: Priority: Contact Name:	Aug 14, 2020 10:46 Aug 21, 2020 5 Day Anna Tuncks	5 AM	
									E	urofins Analytical Serv	vices Manager : Mich	ael Cassidy	
Sample Detail						AUS Leaching Procedure	Extended Metals Suite	Moisture Set					
Melb	ourne Laborato	ory - NATA Site	e # 1254 & 142	271		Х	Х	Х					
Sydr	ey Laboratory	- NATA Site #	18217										
Brisk	bane Laboratory	y - NATA Site #	# 20794 700										
Now	Laboratory - N	IATA Site # 23	130										
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID								
1	TP02-3.0	Jul 09, 2020	Time	Soil	M20-Au20867		x	x					
2	TP04-2.1	Jul 09, 2020	1	Soil	M20-Au20868		X	X					
3	TP02-3.0	Jul 09, 2020		AUS Leachate - pH 5.0	M20-Au20869	х	х						
4	TP04-2.1	Jul 09, 2020		AUS Leachate - pH 5.0	M20-Au20870	х	х						
Test	Counts					2	4	2					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Heavy Metals						
Aluminium	mg/kg	< 10		10	Pass	
Antimony	mg/kg	< 10		10	Pass	
Arsenic	mg/kg	< 2		2	Pass	
Barium	mg/kg	< 10		10	Pass	
Beryllium	mg/kg	< 2		2	Pass	
Bismuth	mg/kg	< 10		10	Pass	
Boron	mg/kg	< 10		10	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Cobalt	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Iron	mg/kg	< 20		20	Pass	
Lead	mg/kg	< 5		5	Pass	
Manganese	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Molybdenum	mg/kg	< 5		5	Pass	
Nickel	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
Silver	mg/kg	< 0.2		0.2	Pass	
Thallium	mg/kg	< 10		10	Pass	
Tin	mg/kg	< 10		10	Pass	
Titanium	mg/kg	< 10		10	Pass	
Uranium	mg/kg	< 10		10	Pass	
Vanadium	mg/kg	< 10		10	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank				1		
Alkali Metals						
Calcium	mg/kg	< 5		5	Pass	
Magnesium	mg/kg	< 5		5	Pass	
Potassium	mg/kg	< 5		5	Pass	
Sodium	mg/kg	< 5		5	Pass	
Method Blank						
Extended Metals Suite						
Phosphorus	mg/kg	< 5		5	Pass	
Sulphur	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Heavy Metals						
Aluminium	%	105		80-120	Pass	
Antimony	%	109		80-120	Pass	
Arsenic	%	101		80-120	Pass	
Barium	%	102		80-120	Pass	
Beryllium	%	103		80-120	Pass	
Bismuth	%	109		80-120	Pass	
Boron	%	100		80-120	Pass	
Cadmium	%	91		80-120	Pass	
Chromium	%	112		80-120	Pass	
Cobalt	%	109		80-120	Pass	
Copper	%	109		80-120	Pass	
Iron	%	110		80-120	Pass	
Lead	%	113		80-120	Pass	

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Manganese			%	109			80-120	Pass	
Mercury			%	95			80-120	Pass	
Molybdenum			%	104			80-120	Pass	
Nickel	%	105			80-120	Pass			
Selenium			%	104			80-120	Pass	
Silver			%	93			80-120	Pass	
Thallium			%	109			80-120	Pass	
Tin			%	101			80-120	Pass	
Titanium			%	108			80-120	Pass	
Uranium			%	108			80-120	Pass	
Vanadium			%	108			80-120	Pass	
Zinc			%	105			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	l								
Heavy Metals				Result 1					
Antimony	M20-Au20897	NCP	%	78			75-125	Pass	
Arsenic	M20-Au20897	NCP	%	80			75-125	Pass	
Barium	M20-Au20897	NCP	%	89			75-125	Pass	
Beryllium	M20-Au20897	NCP	%	86			75-125	Pass	
Bismuth	M20-Au20897	NCP	%	80			75-125	Pass	
Boron	M20-Au20897	NCP	%	80			75-125	Pass	
Cadmium	M20-Au20897	NCP	%	88			75-125	Pass	
Chromium	M20-Au20897	NCP	%	91			75-125	Pass	
Cobalt	M20-Au20897	NCP	%	85			75-125	Pass	
Copper	M20-Au20897	NCP	%	93			75-125	Pass	
Lead	M20-Au20897	NCP	%	81			75-125	Pass	
Manganese	M20-Au20897	NCP	%	184			75-125	Fail	Q08
Mercury	M20-Au20897	NCP	%	86			75-125	Pass	
Molybdenum	M20-Au20897	NCP	%	81			75-125	Pass	
Nickel	M20-Au20897	NCP	%	84			75-125	Pass	
Selenium	M20-Au20897	NCP	%	82			75-125	Pass	
Silver	M20-Au20897	NCP	%	86			75-125	Pass	
Thallium	M20-Au20897	NCP	%	73			75-125	Fail	Q08
Tin	M20-Au20897	NCP	%	79			75-125	Pass	
Uranium	M20-Au20897	NCP	%	81			75-125	Pass	
Vanadium	M20-Au20897	NCP	%	107			75-125	Pass	
Zinc	M20-Au20897	NCP	%	130			75-125	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1				-	
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M20-Au20897	NCP	mg/kg	10000	9300	7.0	30%	Pass	
Antimony	M20-Au20897	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	M20-Au20897	NCP	mg/kg	2.9	2.5	14	30%	Pass	
Barium	M20-Au20897	NCP	mg/kg	36	35	4.0	30%	Pass	
Beryllium	M20-Au20897	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Bismuth	M20-Au20897	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Boron	M20-Au20897	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-Au20897	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-Au20897	NCP	mg/kg	16	18	13	30%	Pass	
Cobalt	M20-Au20897	NCP	mg/kg	7.2	6.8	6.0	30%	Pass	
Copper	M20-Au20897	NCP	mg/kg	13	13	6.0	30%	Pass	
Iron	M20-Au20897	NCP	mg/kg	16000	15000	6.0	30%	Pass	
Lead	M20-Au20897	NCP	mg/kg	17	23	34	30%	Fail	Q15

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Manganese	M20-Au20897	NCP	mg/kg	230	200	14	30%	Pass	
Mercury	M20-Au20897	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M20-Au20897	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M20-Au20897	NCP	mg/kg	23	23	2.0	30%	Pass	
Selenium	M20-Au20897	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M20-Au20897	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Thallium	M20-Au20897	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Tin	M20-Au20897	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Titanium	M20-Au20897	NCP	mg/kg	730	720	1.0	30%	Pass	
Uranium	M20-Au20897	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	M20-Au20897	NCP	mg/kg	21	24	15	30%	Pass	
Zinc	M20-Au20897	NCP	mg/kg	100	100	<1	30%	Pass	
Duplicate				1					
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S20-Au20066	NCP	mg/kg	2200	2100	7.0	30%	Pass	
Magnesium	S20-Au20066	NCP	mg/kg	3700	3600	2.0	30%	Pass	
Potassium	S20-Au20066	NCP	mg/kg	1900	1800	6.0	30%	Pass	
Sodium	S20-Au20066	NCP	mg/kg	880	860	2.0	30%	Pass	
Duplicate				1					
Extended Metals Suite				Result 1	Result 2	RPD			
Phosphorus	S20-Au20066	NCP	mg/kg	66	62	7.0	30%	Pass	
Sulphur	S20-Au20066	NCP	mg/kg	35	42	22	30%	Pass	
Duplicate									
		,		Result 1	Result 2	RPD			
% Moisture	M20-Au20894	NCP	%	12	9.6	24	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Michael Cassidy Emily Rosenberg Analytical Services Manager Senior Analyst-Metal (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix F Surface Water and Sediment Photograph Log

Appendix G Surface Water Laboratory Results

JBS & G Australia (VIC) P/L PO Box 3166 Norwood SA 5067

Attention:

Anna Tuncks

Report Project name Project ID Received Date 731084-W HUNTLY COMMON 58207 Jul 10, 2020

Client Sample ID			DS-01	MS-01	VS-01
Sample Matrix			Water	Water	Water
Eurofins Sample No.			M20-JI18614	M20-JI18615	M20-JI18616
Date Sampled			Jul 09 2020	Jul 09 2020	Jul 09, 2020
Test/Deference		Linit	our 00, 2020	001 00, 2020	001 00, 2020
	LUR	Unit			
Ammonia (co. NI)	0.01	ma/l	0.02	- 0.01	0.02
Chlorido	0.01	mg/L	0.02	200	100
Conductivity (at 25°C)	10	uS/cm	1200	1600	070
Nitrate (as N)	0.02	mg/l	3.1	33	970
nH (at 25°C)	0.02	nH Unite	8.2	83	8.0
Sulphate (as SO4)	5	mg/l	80	88	43
Total Dissolved Solids Dried at 180°C + 2°C	10	mg/L	850	950	600
Total Dissolved Solids Dried at 100 C ± 2 C	1	mg/L	4.0	27	62
Alkalinity (speciated)		IIIg/L	4.0	2.1	0.2
Ricarbonato Alkalinity (ac CaCO2)	20	ma/l	200	250	140
Carbonate Alkalinity (as CaCO3)	10	mg/L	200	250	140
Alkali Motals	10	mg/∟	< 10		
	0.5		24		07
	0.5	mg/L	34	36	27
	0.5	mg/L	34	30	21
Magnesium (filtered)	0.5	mg/L	35	39	30
Detessium	0.5	mg/L	35	39	30
Polassium Detection (filtered)	0.5	mg/L	20	22	7.3
Polassium (intered)	0.5	mg/L	20	22	1.3
Sodium (filtered)	0.5	mg/L	210	240	150
Sodium (intered)	0.5	mg/L	210	240	150
Aluminium (filtered)	0.05		0.06	0.06	0.12
Antimony (filtered)	0.05	mg/L	0.06	0.06	0.12
Anumony (intered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Arsenic (illered)	0.001	mg/L	0.011	0.013	0.007
Banum (intered)	0.02	mg/L	< 0.02	< 0.02	0.05
Beryilium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Bismuth (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Boron (nitered)	0.05	mg/L	0.05	0.06	< 0.05
Charmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
	0.001	mg/L	< 0.001	< 0.001	< 0.001
	0.001	mg/L	< 0.001	< 0.001	< 0.001
Copper (illered)	0.001	mg/∟	0.002	0.002	0.001
	0.00	mg/L	0.11	0.05	0.52
Leau (III(ered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
ivianganese (filtered)	0.005	∣ mg/∟	0.005	< 0.005	0.084

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			DS-01 Water	MS-01 Water	VS-01 Water
Eurofins Sample No.			M20-JI18614	M20-JI18615	M20-JI18616
Date Sampled			Jul 09, 2020	Jul 09, 2020	Jul 09, 2020
Test/Reference	LOR	Unit			
Heavy Metals					
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Molybdenum (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Nickel (filtered)	0.001	mg/L	0.002	0.002	0.002
Selenium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Thallium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Titanium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Uranium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Vanadium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	0.014	0.016	0.014
Extended Metals Suite filtered					
Phosphorus (filtered)	0.5	mg/L	< 1	< 1	< 1
Silicon (filtered)	0.5	mg/L	3.1	3.3	4.7
Sulphur (filtered)	0.5	mg/L	32	33	18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B11			
Ammonia (as N)	Melbourne	Jul 10, 2020	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Chloride	Melbourne	Jul 10, 2020	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Nitrate (as N)	Melbourne	Jul 10, 2020	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Sulphate (as SO4)	Melbourne	Jul 10, 2020	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Jul 10, 2020	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Alkali Metals	Melbourne	Jul 10, 2020	180 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon Phosphorus by ICP-AES			
Conductivity (at 25°C)	Melbourne	Jul 10, 2020	28 Days
- Method: LTM-INO-4030 Conductivity			
pH (at 25°C)	Melbourne	Jul 10, 2020	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Suspended Solids Dried at 103–105°C	Melbourne	Jul 10, 2020	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Extended Metals Suite filtered	Melbourne	Jul 10, 2020	28 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	Jul 10, 2020	7 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

	fine				Austral	lia								New Zealand	
ABN - 50 005 085 521	web : www.eurofir	Enviro	nment Te	ofins.com	Melbour 6 Monter Dandenc Phone : - NATA # Site # 12	ne rey Roac ong Sout +61 3 85 1261 54 & 14	1 h VIC 3 564 500 271	175 0	Sydney Unit F3, 16 Mars Lane Co Phone : NATA #	Buildir Road ove We +61 2 1261 S	ng F st NSW 2066 9900 8400 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	JBS & G Au PO Box 316 Norwood SA 5067	stralia (VIC) P 6	/L			Oi Re Pi Fa	rder N eport none: ax:	No.: #:	7 0	'3108 3 964	4 12 0599		Received: Due: Priority: Contact Name:	Jul 10, 2020 11:33 Jul 17, 2020 5 Day Anna Tuncks	AM
Project Name: Project ID:	HUNTLY CC 58207	OMMON										I	Eurofins Analytical Ser	rvices Manager : Micha	ael Cassidy
	Sa	mple Detail			Conductivity (at 25°C)	HOLD	pH (at 25°C)	Total Suspended Solids Dried at 103–105°C	Eurofins mgt Suite B11	Extended Metals Suite filtered	Total Dissolved Solids Dried at 180°C ± 2°C				
Melbourne Laborato	ry - NATA Site	# 1254 & 142	271		Х	Х	х	х	х	Х	х				
Sydney Laboratory -	NATA Site # 1	8217													
Brisbane Laboratory	- NATA Site #	20794													
Perth Laboratory - N	ATA Site # 237	736				-									
External Laboratory					_										
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1 DS-01	Jul 09, 2020		Water	M20-JI18614	Х		Х	Х	Х	х	х				
2 MS-01	Jul 09, 2020	11:55AM	Water	M20-JI18615	Х		Х	Х	Х	Х	x				
3 VS-01	Jul 09, 2020	1:15AM	Water	M20-JI18616	х		х	х	х	х	х				
4 TRIP BLANK	Jul 09, 2020		Soil	M20-JI18617		Х									
					2	1	2	3	3	3	3				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	A	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Chloride	mg/L	< 1		1	Pass	
Conductivity (at 25°C)	uS/cm	< 10		10	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Sulphate (as SO4)	mg/L	< 5		5	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	mg/L	< 10		10	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 1		1	Pass	
Method Blank						
Alkalinity (speciated)						
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10		10	Pass	
Method Blank						
Alkali Metals						
Calcium	mg/L	< 0.5		0.5	Pass	
Magnesium	mg/L	< 0.5		0.5	Pass	
Potassium	mg/L	< 0.5		0.5	Pass	
Sodium	mg/L	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals	-					
Aluminium (filtered)	mg/L	< 0.05		0.05	Pass	
Antimony (filtered)	mg/L	< 0.005		0.005	Pass	
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Barium (filtered)	mg/L	< 0.02		0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001		0.001	Pass	
Bismuth (filtered)	mg/L	< 0.005		0.005	Pass	
Boron (filtered)	mg/L	< 0.05		0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Iron (filtered)	mg/L	< 0.05		0.05	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Manganese (filtered)	mg/L	< 0.005		0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Molybdenum (filtered)	mg/L	< 0.005		0.005	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Selenium (filtered)	mg/L	< 0.001		0.001	Pass	
Silver (filtered)	mg/L	< 0.005		0.005	Pass	
Thallium (filtered)	mg/L	< 0.005		0.005	Pass	
Tin (filtered)	mg/L	< 0.005		0.005	Pass	
Titanium (filtered)	mg/L	< 0.005		0.005	Pass	
Uranium (filtered)	mg/L	< 0.005		0.005	Pass	
Vanadium (filtered)	mg/L	< 0.005		0.005	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			 			
Ammonia (as N)	%	99		70-130	Pass	
Chloride	%	108		70-130	Pass	
Conductivity (at 25°C)	%	86		70-130	Pass	
Nitrate (as N)	%	102		70-130	Pass	
Sulphate (as SO4)	%	106		70-130	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	%	92		70-130	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code						
Total Suspended Solids Dried at 10	3–105°C		%	101		70-130	Pass					
LCS - % Recovery												
Alkalinity (speciated)												
Carbonate Alkalinity (as CaCO3)			%	89		70-130	Pass					
LCS - % Recovery												
Alkali Metals												
Calcium			%	107		70-130	Pass					
Calcium (filtered)			%	107		70-130	Pass					
Magnesium			%	102		70-130	Pass					
Magnesium (filtered)			%	102		70-130	Pass					
Potassium			%	100		70-130	Pass					
Potassium (filtered)			%	100		70-130	Pass					
Sodium			%	101		70-130	Pass					
LCS - % Recovery												
Extended Metals Suite filtered												
Phosphorus (filtered)			%	109		70-130	Pass					
Silicon (filtered)			%	116		70-130	Pass					
Sulphur (filtered)			%	110		70-130	Pass					
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code				
Spike - % Recovery												
				Result 1								
Ammonia (as N)	M20-JI18614	CP	%	98		70-130	Pass					
Chloride	M20-JI17821	NCP	%	99		70-130	Pass					
Nitrate (as N)	M20-JI18614	CP	%	82		70-130	Pass					
Sulphate (as SO4)	M20-JI18492	NCP	%	93		70-130	Pass					
Total Suspended Solids Dried at 103–105°C	M20-JI21822	NCP	%	106		70-130	Pass					
Spike - % Recovery												
Alkalinity (speciated)				Result 1								
Carbonate Alkalinity (as CaCO3)	M20-My20137	NCP	%	106		70-130	Pass					
Spike - % Recovery	, ,											
Alkali Metals				Result 1								
Calcium	M20-JI20395	NCP	%	106		70-130	Pass					
Magnesium	M20-JI20395	NCP	%	105		70-130	Pass					
Potassium	M20-JI20395	NCP	%	101		70-130	Pass					
Sodium	M20-JI20395	NCP	%	107		70-130	Pass					
Spike - % Recovery						-						
Heavy Metals				Result 1								
Aluminium (filtered)	M20-JI18955	NCP	%	115		75-125	Pass					
Antimony (filtered)	M20-JI18955	NCP	%	89		75-125	Pass					
Arsenic (filtered)	M20-JI18955	NCP	%	91		70-130	Pass					
Barium (filtered)	M20-JI18955	NCP	%	82		75-125	Pass					
Beryllium (filtered)	M20-JI18955	NCP	%	105		75-125	Pass					
Bismuth (filtered)	M20-JI18955	NCP	%	79		75-125	Pass					
Boron (filtered)	M20-JI18955	NCP	%	116		75-125	Pass					
Cadmium (filtered)	M20-JI18955	NCP	%	75		70-130	Pass					
Chromium (filtered)	M20-JI18955	NCP	%	93		70-130	Pass					
Cobalt (filtered)	M20-JI18955	NCP	%	87		75-125	Pass					
Copper (filtered)	M20-JI18955	NCP	%	82		70-130	Pass					
Iron (filtered)	M20-JI18955	NCP	%	93		70-130	Pass					
Lead (filtered)	M20-JI18955	NCP	%	77		70-130	Pass					
Manganese (filtered)	M20-JI18955	NCP	%	64		70-130	Fail	Q08				
Mercury (filtered)	M20-JI18955	NCP	%	50		70-130	Fail	Q08				
Molybdenum (filtered)	M20-JI18955	NCP	%	81		75-125	Pass					

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel (filtered)	M20-JI18955	NCP	%	84			70-130	Pass	
Selenium (filtered)	M20-JI18955	NCP	%	91			70-130	Pass	
Silver (filtered)	M20-JI18955	NCP	%	58			75-125	Fail	Q08
Thallium (filtered)	M20-JI18955	NCP	%	70			75-125	Fail	Q08
Tin (filtered)	M20-JI18955	NCP	%	86			75-125	Pass	
Titanium (filtered)	M20-JI18955	NCP	%	104			75-125	Pass	
Uranium (filtered)	M20-JI18955	NCP	%	84			70-130	Pass	
Vanadium (filtered)	M20-JI18955	NCP	%	98			75-125	Pass	
Zinc (filtered)	M20-JI18955	NCP	%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
				Result 1	Result 2	RPD		_	
Ammonia (as N)	B20-JI16247	NCP	mg/L	0.07	0.07	5.0	30%	Pass	
Chloride	M20-JI18520	NCP	mg/L	5100	5000	2.0	30%	Pass	
Conductivity (at 25°C)	M20-My22271	NCP	uS/cm	330	330	<1	30%	Pass	
Nitrate (as N)	B20-JI16247	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
pH (at 25°C)	M20-My22271	NCP	pH Units	7.2	7.2	pass	30%	Pass	
Sulphate (as SO4)	M20-JI18520	NCP	mg/L	630	620	3.0	30%	Pass	
I otal Dissolved Solids Dried at 180°C ± 2°C	M20-JI16132	NCP	mg/L	160	190	18	30%	Pass	
Total Suspended Solids Dried at 103–105°C	N20-JI17934	NCP	mg/L	36	47	27	30%	Pass	
Duplicate							1		
Alkalinity (speciated)				Result 1	Result 2	RPD		_	
Bicarbonate Alkalinity (as CaCO3)	M20-JI18497	NCP	mg/L	250	220	11	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M20-JI18497	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Duplicate				D 14	D # 0			[
Alkali Metals	1400 1140700	NOD		Result 1	Result 2	RPD	0.001		
	M20-JI19730	NCP	mg/L	30	27	11	30%	Pass	
Magnesium	M20-JI19730	NCP	mg/L	64	65	2.0	30%	Pass	
Potassium	M20-JI19730	NCP	mg/L	18	18	1.0	30%	Pass	
Sodium	M20-J119730	NCP	mg/L	260	260	1.0	30%	Pass	
Duplicate				Deput 1	Deput 2	חחח			
Aluminium (filtered)	M20 114 9055					RPD 11	209/	Deee	
Antimony (filtered)	M20-JI18955		mg/L	< 0.05	< 0.05	<1	30%	Pass	
Artimony (intered)	M20-JI18955		mg/L	< 0.005	< 0.003	<1	30%	Pass	
Barium (filtered)	M20- II18955	NCP	mg/L	0.10	0.11	80	30%	Pass	
Benyllium (filtered)	M20- II18955	NCP	mg/L	< 0.001	< 0.001		30%	Pass	
Bismuth (filtered)	M20- II18955	NCP	mg/L	< 0.001	< 0.001	~1	30%	Pass	
Boron (filtered)	M20- II18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cadmium (filtered)	M20-JI18955	NCP	mg/L mg/l	< 0.002	< 0.00	<1	30%	Pass	
Chromium (filtered)	M20-118955	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cobalt (filtered)	M20-JI18955	NCP	mg/L	0.004	0.005	10	30%	Pass	
Copper (filtered)	M20-JI18955	NCP	ma/l	0.008	0.009	4.0	30%	Pass	
Iron (filtered)	M20-JI18955	NCP	ma/l	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	M20-JI18955	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M20-JI18955	NCP	ma/l	0.46	0.52	11	30%	Pass	
Mercury (filtered)	M20-JI18955	NCP	ma/L	< 0.0001	< 0.0001	<1	30%	Pass	
Molybdenum (filtered)	M20-JI18955	NCP	ma/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel (filtered)	M20-JI18955	NCP	mg/L	0.013	0.015	9.0	30%	Pass	
Selenium (filtered)	M20-JI18955	NCP	mg/L	0.002	0.002	2.0	30%	Pass	
Silver (filtered)	M20-JI18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Thallium (filtered)	M20-JI18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Duplicate									
Heavy Metals			Result 1	Result 2	RPD				
Tin (filtered)	M20-JI18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Titanium (filtered)	M20-JI18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Uranium (filtered)	M20-JI18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vanadium (filtered)	M20-JI18955	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M20-JI18955	NCP	mg/L	0.039	0.041	6.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Authorised By

Michael Cassidy Emily Rosenberg Scott Beddoes Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix H QA/QC Table

INSERT TABLE NAME Project Number: 58207 Project Name: Huntly Common Field Duplicates (soil) Filter: Lab Report Number in ('731111' '73)

Field Duplicates (soil)			724444	721111	RPD	724444	24.000	RPD	
		Lab Report Number	731111	/31111		731111	Split01		
riiter. Lab Keport Nulliber III (731111,7310/1)				1P02-2.4					102-2.4
			Sampled Date	08-07-20	08-07-20		08-07-20	08-07-20	
Chemical Group	ChemName	Units	EQL						
Metals & Metalloids	Aluminium	mg/kg	10	5500	5000	10	5500	5200	6
	Antimony	mg/kg	10 : 7 (Interlab)	<10	<10	0	<10	<7	0
	Arsenic	mg/kg	2 : 4 (Interlab)	890	720	21	890	830	7
	Barium	mg/kg	10 : 1 (Interlab)	53	48	10	53	53	0
	Bervllium	mg/kg	2 : 1 (Interlab)	<2	<2	0	<2	<1	0
	Bismuth	mg/kg	10 : 1 (Interlab)	<10	<10	0	<10	<1	0
	Boron	mg/kg	10 : 3 (Interlab)	<10	<10	0	<10	<3	0
	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	3	15
	Chromium (III+VI)	mg/kg	5 : 1 (Interlab)	14	12	15	14	11	24
	Cobalt	mg/kg	5 : 1 (Interlab)	9.4	7.2	27	9.4	7	29
	Copper	mg/kg	5 : 1 (Interlab)	21	15	33	21	19	10
	Iron	mg/kg	20 : 10 (Interlab)	30000	19000	45	30000	23000	26
	Lead	mg/kg	5 : 1 (Interlab)	100	34	99	100	38	90
	Manganese	mg/kg	5 : 1 (Interlab)	230	160	36	230	240	4
	Mercury	mg/kg	0.1	2.8	2	33	2.8	2.7	4
	Molybdenum	mg/kg	5 : 1 (Interlab)	<5	<5	0	<5	<1	0
	Nickel	mg/kg	5 : 1 (Interlab)	15	11	31	15	14	7
	Selenium	mg/kg	2	<2	<2	0	<2	<2	0
	Silver	mg/kg	0.2 : 1 (Interlab)	<0.2	<0.2	0	<0.2	<1	0
	Thallium	mg/kg	10 : 2 (Interlab)	<10	<10	0	<10	<2	0
	Tin	mg/kg	10 : 1 (Interlab)	<10	<10	0	<10	3	0
	Titanium	mg/kg	10 : 1 (Interlab)	45	51	13	45	9	133
	Uranium	mg/kg	10 : 1 (Interlab)	<10	<10	0	<10	1	0
	Vanadium	mg/kg	10 : 1 (Interlab)	18	14	25	18	13	32
	Zinc	mg/kg	5 : 1 (Interlab)	65	50	26	65	64	2
etalloids									
Organic Sulfur Compounds	Sulphur as S	mg/kg	5 : 10 (Interlab)	240	170	34	240	230	4
ur Compounds									
Major Cations	Calcium	mg/kg	5	2400	2300	4	2400		
	Potassium	mg/kg	5 : 10 (Interlab)	580	820	34	580	450	25
	Magnesium	mg/kg	5	2400	2900	19	2400		
	Sodium	mg/kg	5 : 10 (Interlab)	100	110	10	100	110	10
ns									
Major Anions	Phosphorus	mg/kg	5 : 10 (Interlab)	290	250	15	290	260	11
IS									
Metals	Silicon	mg/kg	2 : 1 (Interlab)	250	480	63	250	130	63
Other	Maisture Content (dried @ 102°C)	0/	1	F 0	17	07	F 0		┣──

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (1-10 x EQL); 30 (10-30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory