Prepared for

Department of Treasury and Finance

Our reference: 14547T rep-f01
1 September 2017

Proposed Residential Rezoning
87-103 Manningham Street,
Parkville

Prepared for:

ratio:consultants pty Itd
This work is copyright. Apart from any use as permitted under Copyright Act 1963, no part may be reproduced without written permission of ratio:consultants pty Itd.

Disclaimer: neither ratio:consultants pty Itd nor any member or employee of ratio:consultants pty Itd takes responsibility in anyway whatsoever to any person or organisation (other than that for which this report is being prepared) in respect of the information set out in this report, including any errors or omissions therein. ratio:consultants pty Itd is not liable for errors in plans, specifications, documentation or other advice not prepared or designed by ratio:consultants pty Itd.
1 Introduction: 4
2 Existing Conditions: 5
2.1 Location and Environment 5
2.2 Road Network 6
2.3 Traffic Conditions 9
2.4 Parking Conditions 14
2.5 Sustainable Transport 14
3 The Proposal: 18
3.1 General. 18
3.2 Proposed Internal Streets 18
3.3 Vehicle Access to Parking 18
3.4 Pedestrian Access 19
4 Access Assessment: 20
5 Parking Assessment: 21
5.1 Clause 52.06 Parking Requirements. 21
5.2 Recommended Parking Rates 22
6 Bicycle Parking: 23
7 Traffic Assessment: 24
7.1 Traffic Generation 24
7.2 Traffic Distribution 24
7.3 Traffic Impacts. 30
8 Conclusions: 32

Appendices:

Appendix A	Traffic Volume Diagrams
Appendix B	SIDRA Results
Appendix C	Feature and Level Survey

Ratio Consultants was commissioned by the Department of Treasury and Finance (DTF) to review at a strategic level the transport and parking aspects of the proposed rezoning of the site at 87-103 Manningham Street, Parkville from General Residential Zone to Residential Growth Zone.

An indicative framework plan prepared by DKO Architecture sets out potential built form outcomes across the site showing a number of residential buildings at varying heights. We have been instructed to assume up to 400 dwellings being constructed on the site. A central ushaped road reserve is shown on the plan with suggested access points to Manningham Street and a secondary potential access point to McIntyre Lane.

This report has been prepared to address the traffic and parking needs of the proposed rezoning, and is based on surveys and observations in the vicinity of the site and on previous studies of similar developments elsewhere in Melbourne.

Further detailed transport and parking analysis will be required at the planning permit stage.

2.1 Location and Environment

The subject site is a relatively large parcel of land in the inner-city suburb of Parkville, with a site area of approximately 1.149 hectares. The land is situated between Citylink (Tullamarine Freeway) and Manningham Street and is located opposite Royal Park to the east. It has frontage to Manningham Street and also has a connection to McIntyre Lane to the south. The land is currently zoned General Residential Zone - Schedule 1.

Figures 2.1 and 2.2 below describe the site location and surrounding context.

Figure 2.1: Site Location

Source: Melways Edition 42
Figure 2.2: Aerial View of the Site and Surrounds

Source: www.nearmap.com

The subject site is currently occupied by a number of two-storey multiunit dwelling buildings containing some 57 dwellings.

There are five existing crossovers along the Manningham Street frontage which serve a number of dwellings on the subject site.

The majority of dwellings on the subject site are accessed from McIntyre Lane which connects to the southern edge of the subject site. An internal road provides access to residential buildings and communal parking areas.

2.2 Road Network

Manningham Street is a Local Collector Road and is the main road frontage for the subject site. It provides a key access route for the local catchment to the arterial roads of Flemington Road to the south and Brunswick Road to the north. To the south of the subject site, Manningham Street continues as a Local Road to the south of the intersection with Church Street. Church Street connects to Flemington Road. After the intersection with Church Street, Manningham Street then becomes Southgate Street which becomes an entry only road from Flemington Road. To the north of the subject site, Manningham Street continues as Oak Street. At this point a short stub road named Manningham Street provides access to a number of properties before terminating. Oak Street continues north to its intersection with Park Street. Fleming Street provides the nearest connection to Brunswick Road.

In the vicinity of the site, Manningham Street provides direct access to a number of residential properties. It has the following characteristics:

- It has a carriageway width of approximately 12.5 metres.
- One traffic lane is provided in each direction with a painted central median.
- Unrestricted kerbside parallel parking is allowed on the western side only. Kerbside parking is prohibited on the eastern side.
- On-road bicycle lanes are provided in each direction.
- Constructed footpaths are provided on each side.
- It has a posted speed limit of $50 \mathrm{~km} / \mathrm{hr}$.

Figure 2.3: Manningham Street looking north past the subject site

Figure 2.4: Manningham Street looking south past the subject site

McIntyre Lane is a Local Road which connects to Manningham Street. It provides direct access to residential properties including the subject site. Yates Lane connects to both Manningham Street and Heathcote Road to the south. Heathcote Road also provides a local access point to the Citylink offramp.
McIntyre Lane is approximately 6.0 m wide. With the exception of a single marked parking space located towards a dog leg at the northern end, parking is prohibited along its length. For the majority of its length, McIntyre Lane is sufficiently wide to cater for simultaneous two-way traffic flow.

Figure 2.5 and 2.6 below describes the existing condition.
Figure 2.5: McIntyre Lane looking north from Yates Lane towards the subject site

Figure 2.6: McIntyre Lane looking south from the subject site towards Yates Lane

Heathcote Road is a Local Road operating east-west between Manningham Street and the Citylink offramp, where it connects via an exit-only stop-controlled intersection. The subject site has access to Heathcote Road via Yates Lane.

2.3 Traffic Conditions

Existing Peak Hour Turning Movements

The existing peak hour turning movements in the vicinity of the site were surveyed on Thursday 10 August 2017 between 7:30am-9:30am and 4:30pm-6:30pm at the following intersections:

Figure 2.7: Manningham Street / McIntyre Lane;

Figure 2.8: Heathcote Road / Yates Lane;

Figure 2.9: Brunswick Road / Fleming Street; and

Figure 2.10: Flemington Road / Church Street.

The overall network peaks were recorded as being between 7:30am8:30am in the AM peak and between 5:15pm-6:15pm in the PM peak. The peak hour results are provided in Figure 2.11 and Appendix A.

Figure 2.11: Existing Peak Hour Turning Movements

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm - 6:15pm

Existing Intersection Operation

The existing operation of the surveyed intersections was analysed using SIDRA Intersection. The parameters used to assess the intersections are summarised below.

Degree of Saturation (D.O.S.) is a ratio of arrival (or demand) flow to capacity. Degrees of saturation above 1.00 represent oversaturated conditions and degrees of saturation below 1.00 represent under saturated conditions. The D.O.S. ratings are detailed in Table 2.

Although operating conditions with a degree of saturation of close to 1.00 are undesirable, it is acknowledged that this level of congestion is typical of many metropolitan intersections during the AM and PM peak hours.

Table 2.1: Degree of Saturation Ratings

Degree of Saturation (D.O.S.)	Rating
Up to 0.6	Excellent
$0.61-0.70$	Very Good
$0.71-0.80$	Good
$0.81-0.90$	Fair
$0.91-1.00$	Poor
Greater than 1.00	Very poor

The 95th percentile queue length (95\%ile queue) is the value below which 95 percent of all observed cycle queue lengths fall, or 5 percent of all observed queue lengths exceed.
Average Delay is the average time, in seconds, that vehicles can be expected to wait at an intersection.
The results for the AM and PM peaks are provided in Table 2. and

Table 2. respectively, whilst detailed results are attached in Appendix B.
Table 2.2: SIDRA Results - Existing Operation - AM Peak

Intersection	Existing Conditions		
	D.O.S.	95% ile Queue (m)	Average Delay (s)
Manningham Street / McIntyre Lane	0.19	0.2	0.2
Heathcote Road / Yates Lane	0.05	0.1	0.4
Brunswick Road / Fleming Street	0.77	128.7	23.9
Flemington Road / Church Street	0.46	95.8	9.8

Table 2.3: SIDRA Results - Existing Operation - PM Peak

Intersection	Existing Conditions		
	D.O.S.	95% le Queue (m)	Average Delay (s)
Manningham Street / McIntyre Lane	0.27	0.3	0.2
Heathcote Road / Yates Lane	0.01	0	0.8
Brunswick Road / Fleming Street	0.75	96.8	21.3
Flemington Road / Church Street	0.38	71.7	9.9

Review of the results indicates the following:

- Manningham Street / McIntyre Lane intersection is currently operating within the 'Excellent' category during both the AM and PM peak periods, with minimal queuing and delays.
- Heathcote Road/Yates Lane intersection is currently operating within the 'Excellent' category during both the AM and PM peak periods, with minimal queuing and delays.
- Brunswick Road/Fleming Street intersection is currently operating within the 'Good' category during both the AM and PM peak. High volume of traffic turning into Fleming Street is resulting in long queues and delays on the east and west legs of the intersection.
- Flemington Road/Church Street intersection is currently operating within the 'Excellent' category during both the AM and PM peak periods.

2.4 Parking Conditions

Unrestricted kerbside parallel parking is available along the western side of the Manningham Street frontage of the subject site. The demand for these spaces is observed to be moderately high during the day.

2.5 Sustainable Transport

Public Transport

The subject site has very good access to public transport, with tram, bus and train services operating within close proximity of the site.
The nearest train station is Flemington Bridge Station for the Upfield Line, located approximately 700 meters from the subject site. The Newmarket Station on the Craigieburn Line is a 1.7 km walk but is also accessible via Tram Route 57.

The public transport services available in the vicinity of the site are detailed in

Table 2.4 and are illustrated in Figure 2.12.

Table 2.4: Public Transport Provision

Service	Route No's	Route	Nearest Stop	Approximate Walking Distance
Bus	505	Moonee Ponds - Melbourne University (via Parkville Gardens)	Parkville Avenue	650m
	951 (Night Bus)	Moonee Ponds - Brunswick West - Pascoe Vale - Glenroy	Mooltan Street / Mt Alexander Road	1.1 km
Tram	59	Airport West - City (Flinders Street Station)	Boundary Road / Flemington Road	500m
	57	West Maribyrnong - City (Flinders Street Station)	Melrose Street	800m
	58	West Coburg - Toorak	Melbourne Zoo / Royal Park	1.5 km
Train	Upfield Line		Flemington Bridge Station	700m
	Craigieburn Line		Newmarket Station	1.7 km (accessible via tram route 57)

Figure 2.12: Public Transport Map

Bicycle Network

The subject site has good access to Melbourne's bicycle network. Specifically:

- On-street bicycle lane along the site frontage on Manningham Street begins at the northern end of the site, to join the Royal Park in the south.
- The Capital City Trail is a 29 km long shared path circling Melbourne City and is accessible midway on Manningham Street, with access to the Flemington Bridge Rail Station.

Figure 2.13: Capital City Trail

3.1 General

It is proposed to rezone the land from General Residential Zone to Residential Growth Zone.

An indicative framework plan prepared by DKO Architecture sets out potential built form outcomes across the site showing a number of residential buildings at varying heights. We have been instructed to assume up to 400 dwellings being constructed on the site.

3.2 Proposed Internal Streets

A central u-shaped road reserve is shown on the plan with two suggested access points to Manningham Street and a secondary potential access point to McIntyre Lane.

Figure 3.1: Excerpt from DKO indicative framework plan

It is recommended that internal roads be designed to cater for two-way traffic. Consideration should also be given for emergency vehicle access as well as waste collection vehicles. The detailed arrangement of any internal roads will be considered as part of the permit applications that would follow the rezoning of the land if approved.

The indicative framework plan also shows the retention of a vehicular connection to McIntyre Lane to the south.

3.3 Vehicle Access to Parking

Vehicle access to parking is indicatively shown as follows:

- Basement car parking with access from the u-shaped internal road;
- Garage parking for the townhouse components with either direct access from the u-shaped internal road or via a shared access driveway off the internal road;

The existing crossovers to the site will be removed and reinstated with kerb and channel.

Service vehicle (including waste collection vehicle) access is proposed to be available via the internal road.

3.4 Pedestrian Access

Pedestrian access to the buildings on the site to the primary Manningham Street frontage should be considered as part of the internal road design. This could include the provision of a dedicated pedestrian path on one or both sides of the internal road with connections to the footpath on the Manningham Street frontage.

The indicative framework plan shows two direct connections onto Manningham Street. There are a number of factors to be considered at the detailed design stage in determining the appropriate locations of the crossovers:

- Crossovers should be located clear of the 'prohibited zone' surrounding the intersection of Manningham Street / Oak Street as per Figure 4.1 below.
Figure 4.1: Prohibited zone as defined at Figure 3.1 of AS/NZS2890.1:2004

- There are a number of electricity/lighting poles located along the site frontage. To avoid the costly relocation of these poles, crossovers should be located at least 1.0 m clear of poles.
- Crossovers should be located clear of any tree protection zones associated with trees that need to be retained either on-site or within the verge.
- There are a number of services located within the verge such as Telstra pits as well as a number of side-entry drainage pits in the drainage channel. These should be considered when locating the proposed crossovers at the permit application stage.

A feature and level survey has been undertaken by Cardno which is attached to Appendix C and illustrates the items for consideration listed above. There are numerous opportunities along the site frontage where vehicular access could be established.

5.1 Clause 52.06 Parking Requirements

Parking requirements for residential developments are set out under Clause 52.06 of the Victoria Planning Scheme, which was last updated on 25 May 2017 through the incorporation of Amendment VC133. The purpose of the Clause, among other things, is:

- To ensure that car parking is provided in accordance with the State Planning Policy Framework and Local Planning Policy Framework.
- To ensure the provision of an appropriate number of car parking spaces having regard to the demand likely to be generated, the activities on the land and the nature of the locality.
- To support sustainable transport alternatives to the motor car.
- To promote the efficient use of car parking spaces through the consolidation of car parking facilities.
- To ensure that car parking does not affect the amenity of the locality.
- To ensure that the design and location of car parking is of a high standard, creates a safe environment for users and enables easy and efficient use.

The statutory car parking requirements relevant to the proposed rezoning are detailed in Table 5.1.

Table 5.1: Clause 52.06 Parking Requirements

Use	Requirement
	1 space to each one or two bedroom dwelling
Dwellings	2 spaces to each three or more bedroom dwelling (with studies or studios that are separate rooms counted as bedrooms)
	1 space for visitors to every 5 dwellings for developments of 5 or more dwellings

Under Clause 52.06-6 of the Planning Scheme, the Responsible Authority is able to reduce the parking requirements (including to zero), provided the applicant satisfies the responsible authority that the provision of car parking is justified on the basis of:

- The car parking demand likely to be generated by the use;
- Whether it is appropriate to allow fewer spaces to be provided than the number likely to be generated by the use.

5.2 Recommended Parking Rates

Car ownership data for residents living within the suburb of Parkville obtained from the Australian Bureau of Statistics (ABS) 2016 Census. Average car ownership and non-car ownership rates for one, two and three bedroom apartments in the Parkville suburb are set out in Table 5.2.

Table 5.2: ABS 2011 Census Car Ownership Data - Suburb of Parkville

Dwelling Type	Average Car Ownership	Non-car ownership	
Semi-detached, row or terrace house, flat, unit or apartment.	2 Bedroom	0.70 cars per dwelling	36%
	3 Bedroom	0.97 cars per dwelling	23%

The site is well located for future residents who choose not to own a car, noting the site's close proximity to numerous sustainable transport options as detailed in Section 2.5.

Based on the above, it is recommended that resident parking is provided generally in accordance with the following indicative rates for future development on the site:

- 0.7 spaces to each one bedroom dwelling;
- 0.9 spaces to each two bedroom dwelling; and
- 1.5 spaces to each three bedroom dwelling.

Visitors

Empirical surveys of visitor parking demands of residential developments in inner urban suburbs of the City indicate that visitor parking demand varies throughout the day, with peak demands occurring between 6.00pm and 9.00am.

Previous surveys conducted by Cardno Pty Ltd between 6:00am Friday 19 November 2010 to midnight Saturday 20 November 2010 at apartment developments located at 127 \& 147 Beach Street, Beacon Cove demonstrated peak visitor parking demands during business hours between 9.00am and 5.00pm on a weekday of 0.06 spaces per apartment, with higher figures of 0.09 spaces per apartment outside weekday business hours.

Based on the foregoing, it is recommended that on-site visitor parking is provided generally in accordance with the following indicative rate for future developments on the site:

- 0.1 visitor spaces to each dwelling.

The provisions set out under Clause 52.34-3 (Bicycle Facilities) of the Planning Scheme require that bicycle parking for the relevant uses be provided at the rates shown in Table 6.1.

Table 6.1: Bicycle Parking Statutory Requirements

Use	Requirement
Dwellings	In developments of four or more storeys, 1 to each 5 dwellings for residents
In developments of four or more storeys, 1 to each 10 dwellings for visitors	

For future development on the site, bicycle parking should be provided in accordance with the requirements set out in Table 6.1 as a minimum.

Notwithstanding the above, in consideration of sustainable transport initiatives and the site's proximity to Melbourne's bicycle network, it is recommended that a bicycle parking provision in excess of the statutory requirements is considered for residents, with bicycle parking provided generally in accordance with the following indicative rates:

- 1 resident bicycle space to each dwelling.
- 1 visitor bicycle space to each 10 dwellings.

7.1 Traffic Generation

Residents

In consideration of the locality of the site, it is estimated that the residential component of the development will generate traffic at a rate of 3 daily vehicle movements per dwelling with an allocated car space, inclusive of 0.3 peak hour vehicle movements per dwelling with an allocated car space during the AM and PM peak hours.

Applying the above rates to the 400 dwellings proposed, results in an anticipated daily traffic volume of 1,200 daily vehicle movements, including an anticipated 120 peak hour vehicle movements during the AM and PM peak hours.

Traffic generation during the AM peak hour typically comprises 20\% inbound movements and 80% outbound movements whilst traffic generation during the PM peak hour typically comprises 60% inbound movements and 40% outbound movements.

The resultant anticipated residential traffic generation is summarised in Table 7.1.

Table 7.1: Anticipated Traffic Generation

7.2 Traffic Distribution

Based on observations of traffic arrival and departure patterns to and from the precinct, the following estimates have been adopted for the subject site.

Morning peak period:

OUTBOUND

- $1 / 3$ of outbound traffic will depart to the north towards Brunswick Road via Fleming Road.
- $1 / 3$ of outbound traffic will depart to the south towards Flemington Road via Church Street.
- $1 / 3$ of outbound traffic will depart via the Citylink offramp via Yates Lane and Heathcote Road.

INBOUND

- 50% of arrival traffic will approach form the north from Brunswick Road via Fleming Road.
- 50% of arrival traffic will approach from the south from Flemington via Church Street.

Afternoon peak period:

OUTBOUND

- 60% of outbound traffic will depart to the north towards Brunswick Road via Fleming Road.
- 30% of outbound traffic will depart to the south towards Flemington Road via Church Street.
- 10% of outbound traffic will depart via the Citylink offramp via Yates Lane and Heathcote Road.

INBOUND

- 50% of arrival traffic will approach form the north from Brunswick Road via Fleming Road.
- 50% of arrival traffic will approach from the south from Flemington via Church Street.

The anticipated traffic generation of the proposal is subsequently detailed in Figure 7.1, whilst the anticipated post development volumes are provided in Figure 7.2. Both figures are also provided in Appendix AA.
The proposed site access points onto Manningham Street have been analysed. Two access points have been modelled in accordance with the indicative framework plan (see Figure 7.3). A further scenario reducing the number of direct access points to one has also been modelled to determine whether this would also be appropriate from a traffic capacity perspective (see Figure 7.4).

Figure 7.1: Anticipated Traffic Generation

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm - 6:15pm

Figure 7.2: Anticipated Post Development Volumes
(Includes existing volumes plus anticipated traffic generation of proposed rezoning)

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm - 6:15pm

Figure 7.3: Anticipated Post Development Volumes - Site Access to Manningham Street - 2 Access Point Option
$\xrightarrow{\xrightarrow{\text { OUTBOUND TRAFFIC }} \text { INBOUND TRAFFIC }}$

Figure 7.4: Anticipated Post Development Volumes - Site Access to Manningham Street - 1 Access Point Option

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm-6:15pm

7.3 Traffic Impacts

In order to assess the impact of the proposal, a SIDRA analysis of the post development conditions has been undertaken.

The results are compared against the existing conditions in Table 7.2 and Table 7.3 respectively. Detailed SIDRA results are provided in Appendix BB.

Table 7.2: SIDRA Results - Post Development Operation - AM Peak

Intersection	Existing Conditions			Post Development Conditions		
	D.O.S.	95\%ile Queue (m)	Average Delay (s)	D.O.S.	95\%ile Queue (m)	Average Delay (s)
Heathcote Road / Yates Lane	0.05	0.1	0.4	0.05	0.8	1.9
Brunswick Road / Fleming Street	0.77	128.7	23.9	0.78	133.6	24.1
Flemington Road / Church Street	0.46	95.8	9.8	0.47	98.8	10.4
North Access / Manningham Street	Proposed Site Access			0.20	1.1	0.6
South Access / Manningham Street	Proposed Site Access			0.20	1.1	3.5
Alternate Single Access / Manningham Street	Site Access (Alternate Option)			0.20	2.2	1.2

Table 7.3: SIDRA Results - Post Development Operation - PM Peak

Intersection	Existing Conditions			Post Development Conditions		
	D.O.S.	95\%ile Queue (m)	Average Delay (s)	D.O.S	95\%ile Queue (m)	Average Delay (s)
Heathcote Road / Yates Lane	0.01	0	0.8	0.01	0.1	1.8
Brunswick Road / Fleming Street	0.75	96.8	21.3	0.65	101.3	21.7
Flemington Road / Church Street	0.38	71.7	9.9	0.41	76.8	10.5
North Access / Manningham Street	Proposed Site Access			0.28	0.8	0.6
South Access / Manningham Street	Proposed Site Access			0.30	0.8	0.6
Alternate Single Access / Manningham Street	Site Access (Alternate Option)			0.30	1.7	1.1

A review of the results indicates that the affected intersections are expected to operate under similar conditions to the existing conditions, with only minor increases to queues and delays.

Heathcote Road / Yates Lane

The Heathcote Road / Yates Lane intersection will continue to operate with negligible delays and queues in both the morning and afternoon peak periods.

Brunswick Road / Fleming Street

The Brunswick Road / Fleming Street intersection is expected to continue to operate under 'Good' conditions during the morning peak period, with queue lengths increasing by just 5m (approximately 1 vehicle length) and average delays increasing slightly. In the afternoon peak period, the worst-case degree of saturation on the southern appraoch slightly decreases with the increase in traffic, resulting in conditions going from 'Good' to 'Very Good' post development. This is due to the slightly altered signal phase timings which favours the southern approach. The queue lengths increase by up to 5 m (approximately 1 vehicle length) with minor increase in delays. This is a minor reduction in performance and is therefore acceptable.

Flemington Road / Church Street

The Flemington Road / Church Street intersection has slightly increased compared with the existing conditions, but is expected to operate within capacity during both the AM and PM peak respectively, whilst delays and queues remain manageable.

Site Access onto Manningham Street

Both the dual and single access options to Manningham Street show negligible queuing and delays for traffic entering and exiting the site. From a traffic capacity perspective, it would be acceptable to provide either one or two access points onto Manningham Street.
Overall, it is concluded that the traffic anticipated to be generated by the proposal can be accommodated by the existing road network, without any mitigating works required.

It is proposed to rezone the subject site to Residential Growth Zone. We have been instructed to assess the traffic impacts of up to 400 dwellings being constructed on the site as part of the rezoning.

An internal road is proposed to service the development with primary vehicle access provided to Manningham Street, with a secondary access to McIntyre Lane.

Based on the assessment undertaken above, it is concluded as follows:

- It is recommended that reduced on-site parking provision rates be considered for development applications within the site. Indicative rates are provided as follows:
- Residents
- 0.7 spaces to each one-bedroom dwelling;
- 0.9 spaces to each two-bedroom dwelling; and
- 1.5 spaces to each three-bedroom dwelling.
- Residential Visitors
- 0.1 spaces to each dwelling.
- It is recommended that bicycle parking be provided in accordance with the statutory requirements as a minimum, with consideration given to providing bicycle parking in excess of the statutory requirements for residents.
- Suitable locations exist at the Manningham Street frontage for crossovers to be located to provide vehicular access. A number of factors should be considered in choosing appropriate locations for the crossovers at the planning permit application stage including proximity to the intersection to the north of the site, power poles, services and tree protection zones.
- SIDRA analysis suggests either one or two access points would provide adequate access without any mitigating works being required to Manningham Street.
- The traffic anticipated to be generated by the proposal can be accommodated by the existing road network, without any mitigating works required

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm - 6:15pm

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm - 6:15pm

XX - AM PEAK: 7:30am - 8:30am (XX) - PM PEAK: 5:15pm - 6:15pm

MOVEMENT SUMMARY

Site: 101 [ManMc_ExAM]
Manningham Street / McIntyre Lane
Existing AM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	4	0.0	0.002	4.6	LOS A	0.0	0.0	0.00	0.53	46.6
2	T1	278	0.0	0.143	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Appr		282	0.0	0.143	0.1	NA	0.0	0.0	0.00	0.01	49.9
North: Manningham Street											
8	T1	357	0.0	0.191	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
9	R2	5	0.0	0.191	4.6	LOSA	0.0	0.0	0.00	0.01	49.1
Approach		362	0.0	0.191	0.1	NA	0.0	0.0	0.00	0.01	49.9
West: McIntyre Lane											
$\begin{aligned} & 10 \\ & 12 \end{aligned}$	L2	5	0.0	0.007	7.8	LOS A	0.0	0.2	0.39	0.83	37.0
	R2	1	0.0	0.007	12.2	LOS B	0.0	0.2	0.39	0.83	36.9
Approach		6	0.0	0.007	8.5	LOSA	0.0	0.2	0.39	0.83	37.0
All Vehicles		651	0.0	0.191	0.2	NA	0.0	0.2	0.00	0.02	49.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [HeaYat_ExAM]
Heathcote Road / Yates Lane
Existing AM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Heathcote Road											
5	T1	95	0.0	0.050	0.0	LOS A	0.0	0.0	0.00	0.01	40.0
6	R2	1	0.0	0.050	3.6	LOS A	0.0	0.0	0.00	0.01	39.8
Appr		96	0.0	0.050	0.0	NA	0.0	0.0	0.00	0.01	40.0
North: Yates Lane											
7	L2	1	0.0	0.004	6.7	LOS A	0.0	0.1	0.01	0.99	37.4
9	R2	3	0.0	0.004	6.6	LOSA	0.0	0.1	0.01	0.99	37.1
Approach		4	0.0	0.004	6.7	LOS A	0.0	0.1	0.01	0.99	37.2
West: Heathcote Road											
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	L2	1	0.0	0.001	3.4	LOS A	0.0	0.0	0.00	0.23	39.4
	T1	1	0.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.23	39.3
Approach		2	0.0	0.001	1.7	NA	0.0	0.0	0.00	0.23	39.3
All Vehicles		102	0.0	0.050	0.4	NA	0.0	0.1	0.00	0.05	39.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [BrunFle_ExAM]

Brunswick Road / Fleming Street

Existing AM Peak

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Fleming Street											
1	L2	207	0.0	0.181	12.7	LOS B	3.9	27.4	0.46	0.67	44.9
2	T1	86	0.0	0.306	38.3	LOS D	3.5	24.5	0.94	0.73	32.8
3	R2	23	0.0	0.233	52.7	LOS D	1.1	7.4	1.00	0.70	30.1
Appr		317	0.0	0.306	22.6	LOS C	3.9	27.4	0.63	0.69	39.5
East: Brunswick Road											
4	L2	109	0.0	0.773	44.1	LOS D	14.4	100.7	0.99	0.92	33.9
5	T1	553	0.0	0.773	38.4	LOS D	15.0	105.1	0.99	0.92	36.6
6	R2	2	0.0	0.011	34.7	LOS C	0.1	0.5	0.79	0.63	35.7
Appr		664	0.0	0.773	39.3	LOS D	15.0	105.1	0.99	0.92	36.1
North: Fleming Street											
7	L2	5	0.0	0.729	47.4	LOS D	9.4	65.6	1.00	0.89	32.7
8	T1	226	0.0	0.729	43.4	LOS D	9.4	65.6	1.00	0.89	31.3
9	R2	77	0.0	0.729	52.9	LOS D	4.8	33.4	1.00	0.88	30.3
Appr		308	0.0	0.729	45.8	LOS D	9.4	65.6	1.00	0.89	31.1
West: Brunswick Road											
10	L2	84	0.0	0.302	10.2	LOS B	6.2	43.4	0.38	0.41	49.8
11	T1	741	0.0	0.302	4.7	LOS A	6.5	45.3	0.38	0.37	55.3
12	R2	649	0.0	0.744	21.9	LOS C	18.4	128.7	0.87	0.90	41.0
Approach		1475	0.0	0.744	12.6	LOS B	18.4	128.7	0.60	0.60	47.7
All Vehicles		2764	0.0	0.773	23.9	LOS C	18.4	128.7	0.74	0.72	41.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	36.5	LOS D	0.1	0.1	0.90	0.90
P2	East Full Crossing	53	39.3	LOS D	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	6.4	LOSA	0.1	0.1	0.38	0.38
P4	West Full Crossing	53	39.3	LOS D	0.1	0.1	0.94	0.94
All Pedestrians		211	30.4	LOS D			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [FleChur_ExAM]
Flemington Road / Church Street

Existing AM Peak

Signals - Fixed Time Isolated Cycle Time $=100$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { ows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Flemington Road										
2 T1	1005	0.6	0.128	0.0	LOS A	0.1	2.7	0.00	0.00	60.0
3 R 2	171	0.0	0.456	43.5	LOS D	7.4	51.9	0.92	0.80	35.0
Approach	1176	0.5	0.456	6.4	LOS A	7.4	51.9	0.14	0.12	54.3
North: Church Street										
4 L2	260	0.0	0.337	42.3	LOS D	5.5	38.4	0.89	0.78	34.9
Approach	260	0.0	0.337	42.3	LOS D	5.5	38.4	0.89	0.78	34.9
West: Flemington Road										
7 L2	19	0.0	0.458	13.9	LOS B	13.7	95.7	0.51	0.47	51.4
8 T1	2986	0.4	0.458	8.3	LOS A	13.7	95.8	0.51	0.46	52.8
Approach	3005	0.4	0.458	8.3	LOS A	13.7	95.8	0.51	0.46	52.8
All Vehicles	4441	0.4	0.458	9.8	LOS A	13.7	95.8	0.44	0.39	51.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians						
Mov Description	Demand Flow ped/h	Average Delay sec	Level of Service	$\begin{array}{rr} \hline \text { Average Back of Queue } \\ \text { Pedestrian } & \text { Distance } \\ \text { ped } & \mathrm{m} \\ \hline \end{array}$	Prop. Queued	Effective Stop Rate per ped
P2 North Full Crossing	53	8.8	LOS A	$\begin{array}{ll}0.1 & 0.1\end{array}$	0.42	0.42
All Pedestrians	53	8.8	LOS A		0.42	0.42

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [ManMc_ExPM]
Manningham Street / McIntyre Lane
Existing PM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	4	0.0	0.002	4.6	LOS A	0.0	0.0	0.00	0.53	46.6
2	T1	525	0.0	0.269	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Appr		529	0.0	0.269	0.1	NA	0.0	0.0	0.00	0.00	49.9
North: Manningham Street											
8	T1	216	0.0	0.116	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
9	R2	3	0.0	0.116	4.6	LOSA	0.0	0.0	0.00	0.01	49.1
Approach		219	0.0	0.116	0.1	NA	0.0	0.0	0.00	0.01	49.9
West: McIntyre Lane											
$\begin{aligned} & 10 \\ & 12 \end{aligned}$	L2	4	0.0	0.011	9.3	LOS A	0.0	0.3	0.56	0.86	36.3
	R2	2	0.0	0.011	14.3	LOS B	0.0	0.3	0.56	0.86	36.1
Approach		6	0.0	0.011	10.9	LOS B	0.0	0.3	0.56	0.86	36.2
All Vehicles		755	0.0	0.269	0.2	NA	0.0	0.3	0.00	0.01	49.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [HeaYat_ExPM]
Heathcote Road / Yates Lane
Existing PM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Heathcote Road											
5	T1	20	0.0	0.011	0.0	LOSA	0.0	0.0	0.00	0.03	39.9
6	R2	1	0.0	0.011	3.6	LOSA	0.0	0.0	0.00	0.03	39.7
Appr		21	0.0	0.011	0.2	NA	0.0	0.0	0.00	0.03	39.9
North: Yates Lane											
7	L2	1	0.0	0.002	6.7	LOS A	0.0	0.0	0.01	0.99	37.5
9	R2	1	0.0	0.002	6.4	LOSA	0.0	0.0	0.01	0.99	37.2
Approach		2	0.0	0.002	6.5	LOS A	0.0	0.0	0.01	0.99	37.3
West: Heathcote Road											
	L2	1	0.0	0.001	3.4	LOS A	0.0	0.0	0.00	0.23	39.4
	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.00	0.23	39.3
Approach		2	0.0	0.001	1.7	NA	0.0	0.0	0.00	0.23	39.3
All Vehicles		25	0.0	0.011	0.8	NA	0.0	0.0	0.00	0.12	39.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [BrunFle_ExPM]

Brunswick Road / Fleming Street

Existing PM Peak

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Fleming Street											
1	L2	398	0.0	0.424	19.9	LOS B	11.0	77.2	0.68	0.76	41.2
2	T1	293	0.0	0.750	39.5	LOS D	12.9	90.5	1.00	0.91	32.5
3	R2	104	0.0	0.381	41.0	LOS D	4.2	29.3	0.93	0.78	33.3
Appr		795	0.0	0.750	29.8	LOS C	12.9	90.5	0.83	0.82	36.5
East: Brunswick Road											
4	L2	58	0.0	0.595	32.0	LOS C	13.8	96.8	0.88	0.77	38.6
5	T1	693	0.0	0.595	26.2	LOS C	13.8	96.8	0.88	0.76	41.8
6	R2	18	0.0	0.069	27.5	LOS C	0.5	3.8	0.70	0.70	38.4
Appr		768	0.0	0.595	26.7	LOS C	13.8	96.8	0.87	0.76	41.5
North: Fleming Street											
7	L2	1	0.0	0.151	36.9	LOS D	2.2	15.4	0.86	0.66	36.1
8	T1	59	0.0	0.151	32.4	LOS C	2.2	15.4	0.86	0.66	34.7
9	R2	44	0.0	0.468	53.9	LOS D	2.1	14.5	1.00	0.73	29.8
Appr		104	0.0	0.468	41.6	LOS D	2.2	15.4	0.92	0.69	32.4
West: Brunswick Road											
10	L2	119	0.0	0.332	12.4	LOS B	7.5	52.7	0.46	0.50	48.1
11	T1	714	0.0	0.332	6.8	LOS A	7.9	55.3	0.46	0.44	53.5
12	R2	346	0.0	0.543	16.8	LOS B	6.4	44.8	0.82	0.81	43.5
Appr		1179	0.0	0.543	10.3	LOS B	7.9	55.3	0.57	0.56	49.6
All V		2846	0.0	0.750	21.3	LOS C	13.8	96.8	0.73	0.69	42.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	28.1	LOS C	0.1	0.1	0.79	0.79
P2	East Full Crossing	53	36.5	LOS D	0.1	0.1	0.90	0.90
P3	North Full Crossing	53	8.5	LOSA	0.1	0.1	0.43	0.43
P4	West Full Crossing	53	37.4	LOS D	0.1	0.1	0.91	0.91
All Pedestrians		211	27.6	LOS C			0.76	0.76

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [FleChur_ExPM]

Flemington Road / Church Street
Existing PM Peak
Signals - Fixed Time Isolated Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/C	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Flemington Road										
2 T1	2635	0.2	0.337	0.1	LOSA	0.2	5.0	0.00	0.00	59.9
3 R 2	326	0.0	0.382	23.3	LOS C	10.1	70.5	0.68	0.76	43.3
Approach	2961	0.2	0.382	2.6	LOS A	10.1	70.5	0.08	0.08	57.5
North: Church Street										
4 L2	207	0.0	0.118	20.7	LOS C	2.7	19.2	0.58	0.71	43.9
Approach	207	0.0	0.118	20.7	LOS C	2.7	19.2	0.58	0.71	43.9
West: Flemington Road										
7 L2	26	0.0	0.382	28.3	LOS C	10.2	71.4	0.75	0.66	42.6
8 T1	1474	0.9	0.382	22.7	LOS C	10.2	71.7	0.75	0.65	43.7
Approach	1500	0.8	0.382	22.8	LOS C	10.2	71.7	0.75	0.65	43.6
All Vehicles	4668	0.4	0.382	9.9	LOS A	10.2	71.7	0.32	0.29	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians						
Mov Description ID	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue $\begin{array}{rr}\text { Pedestrian } & \text { Distance } \\ \text { ped } & m\end{array}$	Prop. Queued	Effective Stop Rate per ped
P2 North Full Crossing	53	23.9	LOS C	$\begin{array}{ll}0.1 & 0.1\end{array}$	0.69	0.69
All Pedestrians	53	23.9	LOS C		0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [HeaYat_ProAM]
Heathcote Road / Yates Lane
Proposed AM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{array}{\|l} \hline \text { Mov } \\ \text { ID } \end{array}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn V/C	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Heathcote Road											
5	T1	95	0.0	0.050	0.0	LOS A	0.0	0.0	0.00	0.01	40.0
6	R2	1	0.0	0.050	3.6	LOS A	0.0	0.0	0.00	0.01	39.8
Appr		96	0.0	0.050	0.0	NA	0.0	0.0	0.00	0.01	40.0
North: Yates Lane											
7	L2	1	0.0	0.035	6.7	LOS A	0.1	0.8	0.06	0.97	37.4
9	R2	37	0.0	0.035	6.7	LOS A	0.1	0.8	0.06	0.97	37.1
Approach		38	0.0	0.035	6.7	LOS A	0.1	0.8	0.06	0.97	37.1
West: Heathcote Road											
10	L2T1	1	0.0	0.001	3.4	LOS A	0.0	0.0	0.00	0.23	39.4
		1	0.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.23	39.3
Approach		2	0.0	0.001	1.7	NA	0.0	0.0	0.00	0.23	39.3
All Vehicles		136	0.0	0.050	1.9	NA	0.1	0.8	0.02	0.28	39.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [BrunFle_ProAM]

Brunswick Road / Fleming Street

Proposed AM Peak

Signals - Fixed Time Isolated Cycle Time $=90$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Fleming Street											
1	L2	229	0.0	0.200	12.8	LOS B	4.4	30.8	0.47	0.68	44.8
2	T1	96	0.0	0.340	38.5	LOS D	3.9	27.4	0.94	0.74	32.8
3	R2	25	0.0	0.263	53.0	LOS D	1.2	8.1	1.00	0.70	30.0
Appr		351	0.0	0.340	22.7	LOS C	4.4	30.8	0.64	0.70	39.4
East: Brunswick Road											
4	L2	111	0.0	0.775	44.2	LOS D	14.4	101.0	0.99	0.92	33.8
5	T1	553	0.0	0.775	38.4	LOS D	15.1	105.5	0.99	0.92	36.6
6	R2	2	0.0	0.011	34.7	LOS C	0.1	0.5	0.79	0.63	35.7
Appr		665	0.0	0.775	39.4	LOS D	15.1	105.5	0.99	0.92	36.1
North: Fleming Street											
7	L2	5	0.0	0.749	47.9	LOS D	9.7	68.2	1.00	0.90	32.6
8	T1	229	0.0	0.749	43.9	LOS D	9.7	68.2	1.00	0.90	31.2
9	R2	77	0.0	0.749	53.7	LOS D	4.7	32.9	1.00	0.90	30.1
Appr		312	0.0	0.749	46.4	LOS D	9.7	68.2	1.00	0.90	30.9
West: Brunswick Road											
10	L2	84	0.0	0.302	10.2	LOS B	6.2	43.4	0.38	0.41	49.8
11	T1	741	0.0	0.302	4.7	LOS A	6.5	45.3	0.38	0.37	55.3
12	R2	658	0.0	0.754	22.5	LOS C	19.1	133.6	0.87	0.90	40.7
Appr		1483	0.0	0.754	12.9	LOS B	19.1	133.6	0.60	0.61	47.5
All V		2811	0.0	0.775	24.1	LOS C	19.1	133.6	0.74	0.73	40.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	36.5	LOS D	0.1	0.1	0.90	0.90
P2	East Full Crossing	53	39.3	LOS D	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	6.4	LOSA	0.1	0.1	0.38	0.38
P4	West Full Crossing	53	39.3	LOS D	0.1	0.1	0.94	0.94
All Pedestrians		211	30.4	LOS D			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [FleChur_ProAM]
Flemington Road / Church Street
Proposed AM Peak
Signals - Fixed Time Isolated Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Flemington Road										
2 T1	1005	0.6	0.128	0.1	LOS A	0.1	2.8	0.00	0.00	60.0
3 R2	182	0.0	0.465	42.8	LOS D	7.9	55.1	0.92	0.80	35.3
Approach	1187	0.5	0.465	6.6	LOS A	7.9	55.1	0.14	0.12	54.1
North: Church Street										
4 L2	294	0.0	0.363	41.7	LOS D	6.2	43.2	0.89	0.79	35.1
Approach	294	0.0	0.363	41.7	LOS D	6.2	43.2	0.89	0.79	35.1
West: Flemington Road										
7 L2	20	0.0	0.465	14.4	LOS B	14.1	98.7	0.53	0.49	51.0
8 T1	2986	0.4	0.465	8.8	LOS A	14.1	98.8	0.53	0.48	52.4
Approach	3006	0.4	0.465	8.9	LOS A	14.1	98.8	0.53	0.48	52.4
All Vehicles	4487	0.4	0.465	10.4	LOS B	14.1	98.8	0.45	0.40	51.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian Distance ped m	Prop. Queued	Effective Stop Rate per ped
P2	North Full Crossing	53	9.3	LOS A	0.10 .1	0.43	0.43
All Pedestrians		53	9.3	LOS A		0.43	0.43

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [ManNAcc_ProAM]
Manningham Street / North Access
Proposed AM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	1	0.0	0.147	5.6	LOS A	0.0	0.0	0.00	0.00	58.3
2	T1	278	0.0	0.147	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Appr		279	0.0	0.147	0.0	NA	0.0	0.0	0.00	0.00	59.9
North: Manningham Street											
8	T1	357	0.0	0.195	0.0	LOS A	0.0	0.0	0.00	0.02	59.8
9	R2	13	0.0	0.195	5.6	LOS A	0.0	0.0	0.00	0.02	57.4
Approach		369	0.0	0.195	0.2	NA	0.0	0.0	0.00	0.02	59.7
West: North Access											
	L2	17	0.0	0.045	9.2	LOS A	0.2	1.1	0.42	0.90	50.7
	R2	17	0.0	0.045	11.4	LOS B	0.2	1.1	0.42	0.90	50.1
Approach		34	0.0	0.045	10.3	LOS B	0.2	1.1	0.42	0.90	50.4
All Vehicles		682	0.0	0.195	0.6	NA	0.2	1.1	0.02	0.06	59.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [ManSAcc_ProAM]
Manningham Street / South Access
Proposed AM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	13	0.0	0.154	5.6	LOSA	0.0	0.0	0.00	0.03	58.1
2	T1	278	0.0	0.154	0.0	LOSA	0.0	0.0	0.00	0.03	59.7
Appr		291	0.0	0.154	0.3	NA	0.0	0.0	0.00	0.03	59.7
North: Manningham Street											
8	T1	1	0.0	0.198	0.0	LOS A	0.0	0.0	0.00	0.62	54.9
9	R2	357	0.0	0.198	5.6	LOS A	0.0	0.0	0.00	0.62	52.9
Appr		358	0.0	0.198	5.6	NA	0.0	0.0	0.00	0.62	52.9
West: North Access											
10	L2	17	0.0	0.045	9.2	LOS A	0.2	1.1	0.42	0.90	50.7
12	R2	17	0.0	0.045	11.3	LOS B	0.2	1.1	0.42	0.90	50.1
Approach		34	0.0	0.045	10.2	LOS B	0.2	1.1	0.42	0.90	50.4
All Vehicles		682	0.0	0.198	3.5	NA	0.2	1.1	0.02	0.38	55.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [ManSiteAcc_ProAM]
Manningham Street / Single Site Access (Alternate Option)
Proposed AM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	13	0.0	0.154	5.6	LOS A	0.0	0.0	0.00	0.03	58.1
2	T1	278	0.0	0.154	0.0	LOSA	0.0	0.0	0.00	0.03	59.7
Appr		291	0.0	0.154	0.3	NA	0.0	0.0	0.00	0.03	59.7
North: Manningham Street											
8	T1	357	0.0	0.195	0.0	LOS A	0.0	0.0	0.00	0.02	59.8
9	R2	13	0.0	0.195	5.6	LOS A	0.0	0.0	0.00	0.02	57.4
Appr		369	0.0	0.195	0.2	NA	0.0	0.0	0.00	0.02	59.7
West: Site Access											
10	L2	34	0.0	0.091	9.2	LOS A	0.3	2.2	0.43	0.92	50.6
12	R2	34	0.0	0.091	11.7	LOS B	0.3	2.2	0.43	0.92	50.0
Approach		67	0.0	0.091	10.4	LOS B	0.3	2.2	0.43	0.92	50.3
All V		727	0.0	0.195	1.2	NA	0.3	2.2	0.04	0.11	58.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [HeaYat_ProPM]
Heathcote Road / Yates Lane
Proposed PM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Heathcote Road											
5	T1	20	0.0	0.011	0.0	LOS A	0.0	0.0	0.00	0.03	39.9
6	R2	1	0.0	0.011	3.6	LOSA	0.0	0.0	0.00	0.03	39.7
Appr		21	0.0	0.011	0.2	NA	0.0	0.0	0.00	0.03	39.9
North: Yates Lane											
7	L2	1	0.0	0.006	6.7	LOS A	0.0	0.1	0.02	0.98	37.5
9	R2	6	0.0	0.006	6.4	LOSA	0.0	0.1	0.02	0.98	37.2
Approach		7	0.0	0.006	6.4	LOS A	0.0	0.1	0.02	0.98	37.3
West: Heathcote Road											
10	L2T1	1	0.0	0.001	3.4	LOS A	0.0	0.0	0.00	0.23	39.4
11			0.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.23	39.3
Approach		2	0.0	0.001	1.7	NA	0.0	0.0	0.00	0.23	39.3
All Vehicles		31	0.0	0.011	1.8	NA	0.0	0.1	0.00	0.27	39.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [BrunFle_ProPM]

Brunswick Road / Fleming Street

Proposed PM Peak

Signals - Fixed Time Isolated Cycle Time $=90$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Fleming Street											
1	L2	413	0.0	0.421	18.6	LOS B	11.0	77.2	0.66	0.76	41.8
2	T1	304	0.0	0.638	33.4	LOS C	12.2	85.3	0.95	0.80	34.4
3	R2	108	0.0	0.329	37.1	LOS D	4.1	28.8	0.88	0.77	34.5
Appro		825	0.0	0.638	26.5	LOS C	12.2	85.3	0.79	0.78	37.7
East: Brunswick Road											
4	L2	63	0.0	0.642	33.9	LOS C	14.5	101.3	0.91	0.80	37.8
5	T1	693	0.0	0.642	28.2	LOS C	14.5	101.3	0.91	0.79	40.9
6	R2	18	0.0	0.073	29.0	LOS C	0.6	3.9	0.72	0.70	37.7
Appro		774	0.0	0.642	28.7	LOS C	14.5	101.3	0.90	0.78	40.5
North: Fleming Street											
7	L2	1	0.0	0.134	33.3	LOS C	2.2	15.7	0.82	0.63	37.5
8	T1	64	0.0	0.134	28.7	LOS C	2.2	15.7	0.82	0.63	35.9
9	R2	44	0.0	0.361	49.4	LOS D	2.0	13.8	0.98	0.74	31.0
Appro		109	0.0	0.361	37.1	LOS D	2.2	15.7	0.88	0.68	33.7
West: Brunswick Road											
10	L2	119	0.0	0.356	14.3	LOS B	8.5	59.8	0.52	0.54	46.9
11	T1	714	0.0	0.356	8.8	LOS A	9.0	62.9	0.52	0.49	52.0
12	R2	375	0.0	0.648	19.1	LOS B	8.1	56.4	0.90	0.84	42.3
Appr		1207	0.0	0.648	12.5	LOS B	9.0	62.9	0.64	0.60	48.1
All Ve		2916	0.0	0.648	21.7	LOS C	14.5	101.3	0.76	0.70	42.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	29.7	LOS C	0.1	0.1	0.81	0.81
P2	East Full Crossing	53	33.0	LOS D	0.1	0.1	0.86	0.86
P3	North Full Crossing	53	10.3	LOS B	0.1	0.1	0.48	0.48
P4	West Full Crossing	53	33.9	LOS D	0.1	0.1	0.87	0.87
All Pedestrians		211	26.7	LOS C			0.75	0.75

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [FleChur_ProPM]
Flemington Road / Church Street
Proposed PM Peak
Signals - Fixed Time Isolated Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Flemington Road										
2 T1	2635	0.2	0.337	0.1	LOS A	0.2	5.2	0.00	0.00	59.9
3 R2	361	0.0	0.406	22.4	LOS C	11.0	76.8	0.67	0.76	43.8
Approach	2996	0.2	0.406	2.8	LOS A	11.0	76.8	0.08	0.09	57.3
North: Church Street										
4 L2	222	0.0	0.121	19.6	LOS B	2.8	19.9	0.56	0.71	44.4
Approach	222	0.0	0.121	19.6	LOS B	2.8	19.9	0.56	0.71	44.4
West: Flemington Road										
7 L2	29	0.0	0.403	29.9	LOS C	10.6	74.0	0.78	0.68	41.8
8 T1	1474	0.9	0.403	24.3	LOS C	10.6	74.4	0.78	0.67	42.8
Approach	1503	0.8	0.403	24.4	LOS C	10.6	74.4	0.78	0.67	42.8
All Vehicles	4721	0.4	0.406	10.5	LOS B	11.0	76.8	0.33	0.30	51.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians						
Mov Description	Demand Flow ped/h	Average Delay sec	Level of Service	$\begin{array}{rr} \hline \text { Average Back of Queue } \\ \text { Pedestrian } & \text { Distance } \\ \text { ped } & m \end{array}$	Prop. Queued	Effective Stop Rate per ped
P2 North Full Crossing	53	25.3	LOS C	$0.1 \quad 0.1$	0.71	0.71
All Pedestrians	53	25.3	LOS C		0.71	0.71

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: 101 [ManNAcc_ProPM]
Manningham Street / North Access
Proposed PM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	1	0.0	0.278	5.6	LOSA	0.0	0.0	0.00	0.00	58.3
2	T1	525	0.0	0.278	0.0	LOSA	0.0	0.0	0.00	0.00	59.9
Appr		526	0.0	0.278	0.0	NA	0.0	0.0	0.00	0.00	59.9
North: Manningham Street											
8	T1	216	0.0	0.135	0.0	LOS A	0.0	0.0	0.00	0.10	59.2
9	R2	38	0.0	0.135	5.6	LOS A	0.0	0.0	0.00	0.10	56.8
Approach		254	0.0	0.135	0.8	NA	0.0	0.0	0.00	0.10	58.8
West: North Access											
10	L2	16	0.0	0.036	10.7	LOS B	0.1	0.8	0.53	0.92	50.1
	R2	7	0.0	0.036	12.9	LOS B	0.1	0.8	0.53	0.92	49.5
Approach		23	0.0	0.036	11.4	LOS B	0.1	0.8	0.53	0.92	49.9
All Vehicles		803	0.0	0.278	0.6	NA	0.1	0.8	0.02	0.06	59.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [ManSAcc_ProPM]
Manningham Street / South Access
Proposed PM Peak
Stop (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manningham Street											
1	L2	38	0.0	0.298	5.6	LOS A	0.0	0.0	0.00	0.04	58.0
2	T1	525	0.0	0.298	0.0	LOSA	0.0	0.0	0.00	0.04	59.6
Appro		563	0.0	0.298	0.4	NA	0.0	0.0	0.00	0.04	59.5
North: Manningham Street											
8	T1	216	0.0	0.115	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
9	R2	1	0.0	0.115	5.6	LOSA	0.0	0.0	0.00	0.00	57.6
Appro		217	0.0	0.115	0.0	NA	0.0	0.0	0.00	0.00	59.9
West: North Access											
10	L2	16	0.0	0.035	10.7	LOS B	0.1	0.8	0.53	0.92	50.1
12	R2	7	0.0	0.035	12.8	LOS B	0.1	0.8	0.53	0.92	49.6
Approach		23	0.0	0.035	11.3	LOS B	0.1	0.8	0.53	0.92	49.9
All Vehicles		803	0.0	0.298	0.6	NA	0.1	0.8	0.02	0.06	59.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: 101 [ManSiteAcc_ProPM]
Manningham Street / Single Site Access (Alternate Option)
Proposed PM Peak
Stop (Two-Way)

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Appendix C Feature and Level Survey

