

McGregor Road Automotive Destination

Reference No. 30041864 Prepared for Podium One 7 June 20<u>19</u>

Document Control

Document:	PRELIMINARY Geotechnical Investigation Report
File Location:	R:\Geotech\05-Projects\30041864 – McGregor Road Automotive Destination\Report
Project Name:	McGregor Road Automotive Destination
Project Number:	30041864
Revision Number:	Rev1

Revision History

REVISION NO.	DATE	PREPARED BY	REVIEWED BY	APPROVED FOR ISSUE BY
0	6 February 2019	Stefan Chenoweth	Zachary Wong	Craig Sutton
1	06 June 2019	Stefan Chenoweth	Zachary Wong & Thayalan Nall	Craig Sutton

Issue Register

DISTRIBUTION LIST	DATE ISSUED	NUMBER OF COPIES
Podium One	7 June 2019	Only Electronic Copy Issued

Important Notice

This report is confidential and is provided solely for the purposes of preliminary geotechnical assessment of the site for the development of McGregor Rd Automotive Destination. This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Ltd ("SMEC") and Podium One, under which SMEC undertook to perform a specific and limited task for Podium One. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Podium One. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Table of Contents

1	INTRO	ODUCTION	3
2	SCOP	E OF WORKS	
3	DESK	TOP STUDY	5
	3.1	General	-
	3.2	Anticipated Geological Setting	
	3.3	Published Borehole Data	
	3.4	Published Groundwater Data	
4	INVES	STIGATION METHODOLOGY	7
	4.1	Fieldwork	7
	4.2	Geotechnical Laboratory Testing	8
5	FIELD	WORK RESULTS	g
	5.1	Site Walkover	g
	5.2	Subsurface Conditions	10
	5.3	Groundwater	10
	5.4	Laboratory Test Results	11
6	COM	MENTS	14
	6.1	Interpretive Ground Model	14
	6.2	Design Parameters	14
	6.3	Suitable Foundation Options	16
	6.4	Temporary and Permanent Slope Angles	16
	6.5	Subgrade CBR Value	17
	6.6	Site Trafficability	17
	6.7	2-3 Level Buildings with no basement levels	18
	6.8	8 Level Hotel Building	18
	6.9	Subgrade Preparation for Access Roads	18
	6.10	Excavatability	
	6.11	Anticipated Construction Difficulties	
	6.12	Construction Inspections	
7	CONC	CLUSION	19
8	LIMIT	TATION	20

Appendices

APPENDIX A TEST SITE LOCATION PLAN

APPENDIX B BOREHOLE/TEST PIT LOGS AND EXPLANATORY NOTES

APPENDIX C INFERRED GEOLOGICAL SECTIONS

APPENDIX D LABORATORY RESULTS

List of Tables

Table 4-1: Summary of borehole and test pit locations (UTM 55H coordinate system)	8
able 5-1: Groundwater Level Measurements	10
Table 5-2: Summary of Encountered Subsurface Conditions (TP01 to TP06 and BH01 to BH05)	12
Fable 5-3: Summary of Geotechnical Laboratory results	13
Fable 5-4: Summary of Laboratory Aggressivity Results	13
Table 6-1: Interpreted Ground Model of Majority of Site	14
Fable 6-2: Geotechnical Preliminary Design Parameters	15
Table 6-3: Recommended Batter Angles with Adopted Geotechnical Parameters	16
ist of Figures	
Figure 1: Approximate Site Location (Reference: QGIS dated 30 May 2019)	5
Figure 2: Extract of Geological Survey of Victoria 1:25,000 scale 'Pakenham' map	6
Figure 3: Site photographs of the typical surface profile to the east of the creekline (left) and a dry ocated on site (right)	
Figure 4: Site photographs of the creekline (left) and typical surface profile to the west of the creekline (r	
igure 5: Site Photograph of Standpipe Monument	11

1 Introduction

This report presents the results of a preliminary geotechnical investigation performed by SMEC Australia Pty Ltd (SMEC) for the proposed McGregor Road Automotive Destination development in Pakenham, Victoria.

It is understood that the proposed development would comprise a multi-storey hotel with basement car park, hospitality / exhibition building, shooting club facilities, kart building, driver experience centre, private storage and other associated infrastructures. At the time of preparing this report, the proposed development is still at the master plan study phase.

This work has been commissioned by Podium One to undertake the preliminary geotechnical investigation under the SMEC Short-Form Consultancy agreement accepted and signed by Podium One dated 13 December 2019. The work has been performed in general accordance with SMEC proposal 1033018 Rev2, dated 12 December 2018.

The purpose of the geotechnical investigation presented herein is to assess subsurface conditions and to provide recommendations to assist with the conceptual design of the proposed development.

2 Scope of Works

The preliminary geotechnical investigation scope of works was developed by SMEC after considering the proposed development as stated in the Vision Plan Report dated November 2018 as stated below:

- Preparation of site-specific health, safety and environment plan for the geotechnical site investigation;
- Conduct a 'dial before you dig' search to assess the presence of buried services that could affect or may be at risk from the proposed works;
- Conduct underground service location checks with a suitably qualified contractor to ensure investigation locations do not impose within safety limits of underground services;
- Drill one 20m borehole, or prior refusal, at the location of the proposed hotel;
- Drill four 10m boreholes, or prior refusal, at the location of proposed low-level buildings and shooting range;
- Excavate six 2m test pits, or prior refusal;
- Install one standpipe piezometer within a select borehole to accurately measure groundwater levels;
- Undertake sampling for geotechnical laboratory testing; and,
- Complete a geotechnical report which includes factual data in conjunction with interpretive comments and recommendations pertaining to the geotechnical aspect of the proposed development.

3 Desktop Study

3.1 General

The subject site is located off McGregor Road, Pakenham and about 60km South-East of Melbourne in Victoria. The project site is bounded by Keys Lane (an unsealed road) to the north, McGregor Road to the east and a HV transmission line to the south. The site is generally covered by grasses, shrubs and trees. A locality plan is presented in Figure 1.

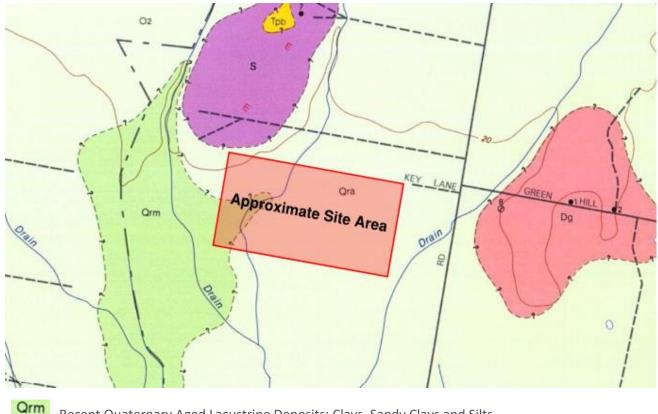



Figure 1: Approximate Site Location (Reference: QGIS dated 30 May 2019)

3.2 **Anticipated Geological Setting**

Reference to the Geological Survey of Victoria 1:25,000 scale 'Pakenham' map indicates that a majority of the site is underlain by Quaternary aged alluvial-colluvial deposits (Qra) that consists of sands, silts and clays. The geological map indicates that the far western side of site is expected to be underlain by Quaternary aged lacustrine deposits (Qrm) that consists of clays, sandy clays and silts. An extract of the geological map is shown in Figure 2.

Recent Quaternary Aged Lacustrine Deposits: Clays, Sandy Clays and Silts

Recent Quaternary Aged Alluvial/Colluvial Deposits: Sands, Silts and Clays

Figure 2: Extract of Geological Survey of Victoria 1:25,000 scale 'Pakenham' map

3.3 **Published Borehole Data**

The Visualising Victoria's Groundwater (VVG) interactive map presents one borehole located within 500 m of the site area. This borehole indicates the top soil is 0.25 m thick and it is underlain by grey clay to a depth of 2 m BGL (metres below ground level) overlying hard sandy clays to a depth of 25 m BGL. Below this, residual granite recovered as sands and clays were found to a depth of 32 m BGL.

3.4 **Published Groundwater Data**

The VVG interactive map shows that the water table within the site may be encountered within the upper 5 m BGL and the groundwater salinity is expected to be in the range of 3,500-7,000 mg/l.

4 Investigation Methodology

4.1 Fieldwork

A site walkover was carried out on 8th January 2019 by a SMEC geotechnical engineer. This was then followed by test pit excavations on 17th January and borehole drilling between 23rd and 25th January 2019.

A suitably qualified underground service locator was engaged during the site walkover to ensure test locations would not impact any services that may be located within the site area. The fieldworks involved the excavation of six (6) test pits to a target depth of 2 m, the drilling of four (4) boreholes to a target depth of 10 m and one (1) borehole to a target depth of 20 m. All investigation locations were within vacant lands previously used as farmland and dirt-track motorcycle circuits.

The test pits were excavated using a 5-tonne excavator sourced by Southern Plant Hire. Bulk samples were collected from recovered spoil for laboratory testing and pocket penetrometer readings were undertaken on the side walls of the test pits to a maximum depth of 1.5 m.

The boreholes were drilled using a 4WD mounted drill rig, supplied and operated by Apex Drilling Pty Ltd. The boreholes were advanced using solid flight auguring and wash boring techniques. Standard Penetration Tests (SPTs) were collected at nominal 1.5 m depth intervals in soil strata. The SPTs were conducted to assess soil consistencies and to collect disturbed samples at select depths. Thin-walled tubes (U50) were used to collect undisturbed soil samples at nominated depths to target cohesive materials within select boreholes.

DCP tests were conducted at all borehole and test pit locations to a maximum depth of 1.5 m.

The borehole co-ordinates and surface RL's are summarised in Table 4-1. The coordinates of the boreholes were recorded using a hand-held GPS device and elevations were taken from the site survey provided by Podium 1 in an email dated 21st January 2019 and are accurate to the nearest 0.2 m. A site locality plan and a borehole location plan are presented in Appendix A.

The selected samples were sent for laboratory testing to assist in determining the engineering properties of site soils. The laboratory tests were undertaken in a NATA accredited laboratory.

Borehole engineering logs together with explanatory notes describing terms and symbols used in their preparation are provided in Appendix B. Long sections presenting the inferred geological cross-section of site are provided in Appendix C.

Fieldwork was supervised by a SMEC Geotechnical Engineer who was responsible for positioning the boreholes and test pits at the nominated locations, preparing borehole/test pit logs in general accordance with AS1726-2017 'Geotechnical Site Investigations' and coordinating soil sampling. On completion, all boreholes and test pits aside from BH05 were backfilled with excavated/drilled spoil and reinstated to match the existing ground surface. The excavator bucket was used to compact the backfill within each test pit.

A standpipe piezometer was installed in BH05 to a depth of 14 m . Upon completion, the standpipe was developed by bailing 3 times the well volume.

The standpipe construction is discussed further in Section 5.3 with the construction details shown in Appendix B.

Table 4-1: Summary of borehole and test pit locations (UTM 55H coordinate system)

Investigation ID	Easting (m)	Northing (m)	Final Depth (m BGL)	Approximate Elevation* (m AHD)
BH01	364311	5782089	10.45	15.6
BH02	364259	5781590	9.95	13.2
BH03	364554	5781982	10.45	15.2
BH04	365132	5781966	9.95	16.2
BH05	365008	5781914	19.60	15.6
TP01	364358	5781967	2.00	14.8
TP02	364417	5781584	2.00	13.6
TP03	364725	5782023	2.00	15.8
TP04	365050	5781784	2.00	15.0
TP05	364849	5781594	2.00	13.4
TP06	365162	5781470	2.00	13.8

^{*} Elevation levels are taken from survey data provided by Podium 1

4.2 Geotechnical Laboratory Testing

Laboratory testing on selected soil samples was undertaken in a NATA registered Laboratory. The laboratory testing was undertaken in accordance with the relevant sections of AS1289 "Methods of Testing Soils for Engineering Purposes". The laboratory testing completed include:

- 3 x Atterberg limits and linear shrinkage tests;
- 3 x Field moisture content tests;
- 3 x Particle size distribution tests (AS1289 3.6.1);
- 1 x pH, Chloride, Sulphate and Sulphide
- 2 x Standard Compaction tests
- 2 x Californian Bearing Ratio (CBR) tests
- 1 x Shrink Swell test

The laboratory test result certificates are presented in Appendix D.

5 Fieldwork Results

5.1 Site Walkover

Observations from the site walkover found that the site was split roughly down the centre along a north-south orientation by a creek line. The east side of the creek line consisted of farmland paddocks with low-lying, green grasses. The grass was maintained at relatively short lengths due to grazing from cattle that were kept within the paddocks. The surface was relatively flat with some scattered dams located regularly across site and sparse trees residing along some sections of paddock boundaries. Figure 3 presents site photographs showing the typical surface to the east of the creekline.

Figure 3: Site photographs of the typical surface profile to the east of the creekline (left) and a dry dam located on site (right)

The west side of the creek line and the surrounding surface of the creekline itself was covered with thick, tall reeds, dry wheat crops, and large bushes. This area of site was once used as a motorcycle course with heavily undulating bumps and berms across the surface. A majority of the surface was observed to be natural with the exception of built-up earth mounds on some corners of the old motorcycle track. Figure 4 presents site photographs showing the typical surface along and to the west of the creekline.

Figure 4: Site photographs of the creekline (left) and typical surface profile to the west of the creekline (right)

A residential dwelling was observed on the north-eastern side of site, just off Key Lane, and some small sheds with abandoned vehicles resided in two areas along the southern side of site where the old motorcycle clubs were located.

5.2 Subsurface Conditions

This section provides a general description of the subsurface conditions encountered across the site. For conditions encountered at specific borehole/test pit locations, reference should be made to the engineering borehole/test pit logs provided in Appendix B. The sub-surface conditions encountered in the boreholes were generally consistent with those anticipated from published geological sources. Summary tables of the encountered subsurface conditions are presented in Table 5-2.

5.3 Groundwater

The groundwater at BH05 was recorded from the development of a standpipe at this location. The standpipe in borehole BH05 was built from a combination of solid and slotted, high-pressure PVC pipe. The slotted section was installed at a depth from 8 m to 14 m and the remainder of the standpipe was constructed with solid PVC. The top of the PVC was sealed with a standpipe cap and was installed as a monument with a 750 mm stick-up from the ground surface (as shown in Figure 5) to prevent surface run-off from entering the standpipe and for ease of location.

Groundwater level measurements observed during the preliminary geotechnical investigation are summarised in Table 5-1.

Table 5-1: Groundwater Level Measurements

Groundwater RL (m BGL)											
Borehole ID	BH01	BH02	вн03	BH04	BH05						
Groundwater Depth Below Ground Level observed during drilling (m BGL)	3.5*	3.5*	7.5*	9.5*	-						
Groundwater Depth Below Ground Level observed in the standpipe (m BGL)	-	-	-	-	9						

Notes:

m BGL – metres Below Ground Level

^{*} Groundwater levels were measured during drilling. Further groundwater checks are recommended to determine groundwater levels following establishing the groundwater equilibrium state.

Figure 5: Site Photograph of Standpipe Monument

It should be noted that all boreholes and test pits aside from BH05 were not opened long enough and did not have appropriate casing support to establish accurate groundwater readings. However, approximate groundwater levels were recorded on all borehole logs that was inferred from observations made on the recovered samples.

5.4 Laboratory Test Results

Geotechnical laboratory test results of soils are summarised in Table 5-3. Aggressivity testing (pH, Sulphate, Chloride, and electrical conductivity) are summarised in Table 5-4. Laboratory certificates are presented in Appendix D.

Table 5-2: Summary of Encountered Subsurface Conditions (TP01 to TP06 and BH01 to BH05)

	Depth to Top of Strata (m BGL)												
Ground Condition	TP01	TP02	TP03	TP04	TP05	TP06	BH01	BH02	BH03	BH04	BH05		
Top Soil – Silty CLAY, low plasticity, with rootlets	0	0	0	0	0	0	0	0	0	0	0		
Alluvial Deposits - Silty CLAY – medium to high plasticity, stiff to very stiff, dark grey to grey, trace sand, trace rootlets,	0.12	0.1	0.1	0.1	0.1	0.1	-	0.1	0.1	0.1	0.1		
Alluvial Deposits - Silty CLAY / Sandy CLAY / Clayey SILT — high plasticity, generally firm to stiff, grey, mottled brown, dark grey, red and white, medium to coarse grained sand	1.4	1.5	-	-	-	1.5	0.1 ^B	0.5*	0.5 ^A	1.0	1.0		
Alluvial Deposits – Clayey SAND / Silty SAND / SAND— medium dense to dense, fine to coarse grained sand, grey, mottled brown and red	-	-	-	-	-	-	8	-	9	9.5	12.5		
Residual Soil – Silty CLAY / Gravelly CLAY, hard, brown, mottled grey, fine grained angular gravel, residual soils of Silurian aged siltstone	-	-	-	-	-	-	-	-	-	-	13.5		
TP/BH Terminated Depth	2	2	2	2	2	2	10.45	9.95	10.45	9.95	19.6		

Notes:

m BGL – metres Below Ground Level TP – Test Pit, BH – Borehole A Hard Sandy Clay from 8 to 9m B Hard Sandy Clay from 7 to 8m

Table 5-3: Summary of Geotechnical Laboratory results

Borehole ID	Depth	Field Moisture Content	Standard Maximum Dry Density	CBR	CBR Swell	Liquid Limit	Plastic Limit	Plasticity Index	Linear Shrinkage	Particle Size Passing 0.075mm	Shrink Swell (Iss)
	(m BGL)	(%)	(t/m³)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
BH02	3.5 – 3.95	10.5	-	-	-	36	13	23	9	23	-
BH03	10 – 10.45	7	-	-	-	19	13	6	2.5	45	-
BH04	2.5 – 2.86	-	-	-	-	-	-	-	-	-	2.3
BH05	1 - 1.4	-	-	-	-	-	-	-	-	-	1.2
TP01	0.4 – 0.5	-	1.89	3.5	0.5	-	-	-	-	-	-
TP06	0.3 – 0.5	9	1.86	1.5	2.0	34	13	21	11	63	-

Table 5-4: Summary of Laboratory Aggressivity Results

Borehole ID	Depth	Field Moisture Content	рН	Chloride	Sulphate (So ⁴)	Electrical Conductivity (EC)
	(m BGL)	(%)	(pH units)	(mg/kg)	(mg/kg)	(μS/cm)
BH02	0.6 – 0.7	11	6.9	30	37	86
BH05	6.2 – 6.3	19	7.9	490	81	320

6 Comments

6.1 Interpretive Ground Model

A summary of the generalised geotechnical ground model is presented in Table 6-1 and an inferred geological section is presented in Appendix C. Soft to firm silty clays were recovered within BH02 which is near the expected transition from alluvium to lacustrine deposits and where groundwater infiltration from the nearby creekline is evident.

All boreholes and test pits reached their target depths aside from BH05 which refused at a depth of 19.6m on hard residual soils.

Delineation of material types, formations and soil consistencies were the primary factors when forming the ground models. Soil consistencies were determined based on visual tactile assessments on site with a particular focus on in-situ tests such as Dynamic Cone Penetration, Pocket Penetrometer and Standard Penetration Tests.

Table 6-1: Interpreted Ground Model of Majority of Site

Unit No.	Material Description	Depth of Unit (m BGL)
1	Topsoil Silty Clay with rootlets	0 to 0.1
2a	Alluvial Soil Silty/Sandy CLAY – medium to high plasticity, dark grey to grey, trace sand, trace rootlets, stiff to very stiff consistency	0.1 to 1
2b	Alluvial Soil Silty CLAY / Sandy CLAY / Clayey SILT — high plasticity, generally firm to stiff , grey, mottled brown, dark grey, red and white, medium to coarse grained sand	1 to 9
2c	Alluvial Soil Clayey SAND / Silty SAND / SAND— moderately dense to dense, fine to coarse grained sand, grey, mottled brown and red	9 to 13.5
3	Residual Soil Silty CLAY / Gravelly CLAY, hard, brown, mottled grey, fine grained angular gravel, residual soils of Silurian aged siltstone	13.5 to 19.6 ^R

Notes: Refusal on residual soil

6.2 Design Parameters

The preliminary geotechnical design parameters are presented in Table 6-2 and are appropriate for conceptual designs. At the detailed design phase a more detailed investigation across the site would be necessary to refine these parameters. These values have been determined based on the site conditions at the time of the investigation and some of them may change if the soil is subject to prolonged rainfall or soaking during construction.

The preliminary lateral design parameters are given in Table 6-2. Consideration of the car park basement design and construction should be considered in the detailed geotechnical investigation phase.

Table 6-2: Geotechnical Preliminary Design Parameters

Unit	Material	Unit Weight ¹ (kN/m ³)	Conservative SPT N-Value	Undrained Shear Strength (S _u)	Poisson's Ratio	Young's Modulus (Es) (MPa)	Effective Cohesion, C' (kPa)	Effective Friction, Φ'	'At-rest' Pressure Co-eff. Ko	Active Earth Pressure Co-eff.	Passive Earth Pressure Co-eff.
1	Topsoil	-	-	-	-	-	-	-	-	-	-
2a	Alluvial Soil Silty/Sandy CLAY (stiff to very stiff)	19	-	75-125	0.25-0.3	35-65	5-10	25-30	0.50- 0.58	0.33- 0.40	2.5-3.0
2b	Alluvial Soil Silty CLAY/Sandy CLAY/Clayey SILT (firm to stiff)	18	7	30-75	0.25-0.3	15-40	3-8	22-27	0.55- 0.63	0.38- 0.45	2.2-2.6
2 c	Alluvial Soil Clayey SAND / Silty SAND / SAND (moderately dense to dense)	18	22	-	0.2-0.25	10-15	0-5	28-35	0.43- 0.53	0.27- 0.36	2.8-3.8
3	Residual Soil Silty CLAY / Gravelly CLAY (hard)	20	47	200-300	0.25-0.3	60-90	8-12	28-35	0.43- 0.53	0.27- 0.36	2.8-3.8

6.3 Suitable Foundation Options

Based on the supplied information, it is understood that the proposed development will comprise some 2-3 storey above ground buildings with no basements and an 8 storey above ground hotel building with basements.

Given that no layout plans and cross sections of the buildings are available, it is assumed that some of the buildings may be founded on shallow foundations.

Shallow foundations would be considered appropriate for lightly loaded buildings within major portion of the site where alluvial deposits are present, except in the south-western corner of site where weaker soils were observed. For heavily loaded structures, utilising pile foundations may be more cost effective.

For preliminary geotechnical assessment, it is considered a total settlement of 25mm is tolarable for lightly loaded (100kPa) footings founded in Unit 2a. The total settlement would be refined once the structural dimensions and loading for the footing is provided and after completion of the detailed geotechnical investigation.

As the design loads are expected to be greater than a residential type dwelling for the proposed low-level buildings, typical slab on ground stiffened raft footing design in accordance with AS2870-2011 for residential foundation may not be feasible without sufficient engineering input to limit long term settlement and other ground behaviour.

6.4 Temporary and Permanent Slope Angles

For dry batters cut into the alluvial firm to very stiff clays, the slope angles in Table 6-3 are recommended for short and long-term conditions. The batter angles presented assume surcharge loads are kept clear of batter crests and surface water is diverted away from batters. The minimum investigation groundwater level of 3.5m bgl was assumed for all analyses. These calculations were completed in the program SlopeW using the interpreted ground model summarised in Table 6-1 with parameters taken from Table 6-2.

Table 6-3: Recommended Batter Angles with Adopted Geotechnical Parameters

Material*	Undrained Shear Strength (kPa)	Drained Cohesion (kPa)	Effective Friction Angle (°)	Unit Weight (kN/m)	Batter Height (m bgl)	Temporary Condition (H:V)	Long Term Condition (H:V)
Unit 2a	100	8	25	19	< 1	0.5 : 1	1:1
Unit 2a	100	8	25	19	1 - 2	1:1	1.5 : 1
Unit 2b	50	5	22	18	1 2	1.1	1.5 . 1
Unit 2a	100	8	25	19	2 - 3	1:1	2.5 : 1
Unit 2b	50	5	22	18	2 3	1.1	2.3 . 1

^{*} Unit 2a expected to a depth of 1m underlain by Unit 2b

Temporary Condition – Excavations left open for short periods of time only during the construction phase <3 months

Long Term Condition – Excavations left open indefinitely

Batter angles of excavations must be witnessed, verified and best assessed by an experienced geotechnical engineer during works. Flatter batter angles may be required if adverse ground and weather conditions are encountered / anticipated.

6.5 Subgrade CBR Value

The limited number of laboratory CBR testing undertaken indicates CBR values of Unit 2A vary between 1.5% and 3.5% and the CBR swell percentages ranges from 0.5% to 2.0%.

For prelimnary designs SMEC recommends a design CBR value of 2.0% for clay subgrade soils may be adopted. Site specific CBR testing to confirm the assumed design values is recommended for any critical or highly trafficked sections of pavement. Consideration could be given for subgrade treatments for the clay subgrade materials to allow more economical pavement design. Site clays must be treated as expansive.

It should be noted that there may be fill placement over areas of site (particularly in the bike track regions). In the areas of fill, the CBR values will be dependent on the source, quality, and compaction of the fill material.

6.6 Site Trafficability

The site was trafficable for a 5 tonne excavator and a four-wheel drive vehicle during the time of the investigation (January 2019).

Due to the thick vegetation observed on the western side of the creekline, it would be ideal to perform vegetation removal prior to construction works to allow full access to the site. Only one safe access over the creekline was observed during the geotechnical site visit and is situated on the south side of site near the old motorcycle race track. Access to surrounding farmland paddocks or construction of bridges over the creekline may be required if more access is required between the eastern and western side of site.

Problems may arise from disturbance of the upper level soil fabric resulting from the removal of the existing vegetation. This may limit trafficability for light weight construction vehicles and create difficulties for earthworks operations during wet season. It is recommended that vegetation be trimmed (mowed) and shrubs be cut to the ground level, which will preserve the crust and improve trafficability. Whereas clearing and grubbing would present issues if the crust is breached, and this would be more pronounced after rainfall events.

Should the upper soils become saturated during construction, the removal of the topsoil layer and placement of a temporary working platform (consisting of a geotextile placed under rock fill) may be required to allow access for light weight construction plant and road vehicles.

It is recommended that the following steps be taken to improve trafficability:

- The exposed surface in the construction area is proof rolled to provide a seal and assist in identifying weak or soft areas for treatment;
- Dedicated construction tracks are used to control site traffic and limit trafficability issues; and
- Provision and maintenance of adequate drainage conditions at this site is essential. It should be
 ensured that runoff is diverted away from the construction and access tracks to prevent ponding of
 water.

To assist in maintaining a workable construction site, the placement of a working platform as a final layer across structure/building platforms is recommended. The potential trafficability problems with this site should not be underestimated. This site will very quickly become untrafficable if appropriate drainage control measures, along with construction practices appropriate for the site conditions, are not maintained.

The contractor performing the works should fully inform themselves of the ground conditions at the site prior to commencement of earthworks. This requirement should be explicit in any earthworks specifications or contract. Allowance should be made for the design, construction, and maintenance of a suitable working platform to support construction plant and heavy equipment such as piling rigs. Further advice can be provided by SMEC once details pertaining to design levels and construction plant are available.

6.7 2-3 Level Buildings with no basement levels

At the assumed building level, the foundation material is expected to typically comprise firm to stiff clays. The suitability of spread footings to support the proposed building will depend on the applied loading & predicted long term settlement and whether the resulting footings are of a reasonable size to be feasible.

Internal columns supported on pad footings should be assessed on a case by case basis based on the subsoil encountered. In stiff to very stiff clayey soils an allowable bearing pressures of 100 - 200 kPa may be adopted.

6.8 8 Level Hotel Building

Owing to the firm to stiff clayey soils, options to support the hotel building on shallow foundation should be carefully investigated and engineered based on the loading conditions. At this stage details of the likely loading are not known, a deep foundation system may be appropriate for the 8-storey hotel building in these ground conditions.

6.9 Subgrade Preparation for Access Roads

If the subgrade can be successfully proof rolled (in accordance with Section 173 of VicRoads Standard Specifications for Roadworks and Bridgeworks) without excessive movement, there will be no need to improve the subgrade for construction purposes. Any soft spots encountered during subgrade preparation which do not respond to further compaction should be removed and replaced with suitable material compacted to the necessary moisture and density ratio requirements.

Onsite soils are prone to softening when wet. If excessively wet and soft soil are encountered at the time of construction and the subgrade cannot be successfully proof rolled, a working platform will be required to facilitate compaction of the overlying layers. The working platform may comprise lime stabilisation of insitu soil, placement of imported select fill or placement of durable granular material. The use of a geotextile and geogrid beneath/within a granular working platform will assist in reducing the required thickness of the platform.

6.10 Excavatability

As stated in Section 6.1, it is expected that the natural excavation material will comprise soils across the entire site and rock is unlikely to be recovered at shallow depths. Conventional excavation machinery is assumed to be suitable for construction works on this site and excavatability is unlikely to be an issue.

6.11 Anticipated Construction Difficulties

Large trees and thistles were identified onsite during the site walkover. Removal of this vegetation and their associated roots will be required as part of the subgrade preparation, since roots can be deleterious to foundations. Care should be taken when removing the roots, as incomplete removal could lead to underdraining and ground settlement when the roots decompose.

It is important to note the various dams scattered across site that may contribute to excessive increases in moisture conditions within the surrounding soil, particularly during winter months, and may present trafficability/excavatability issues during construction works.

6.12 Construction Inspections

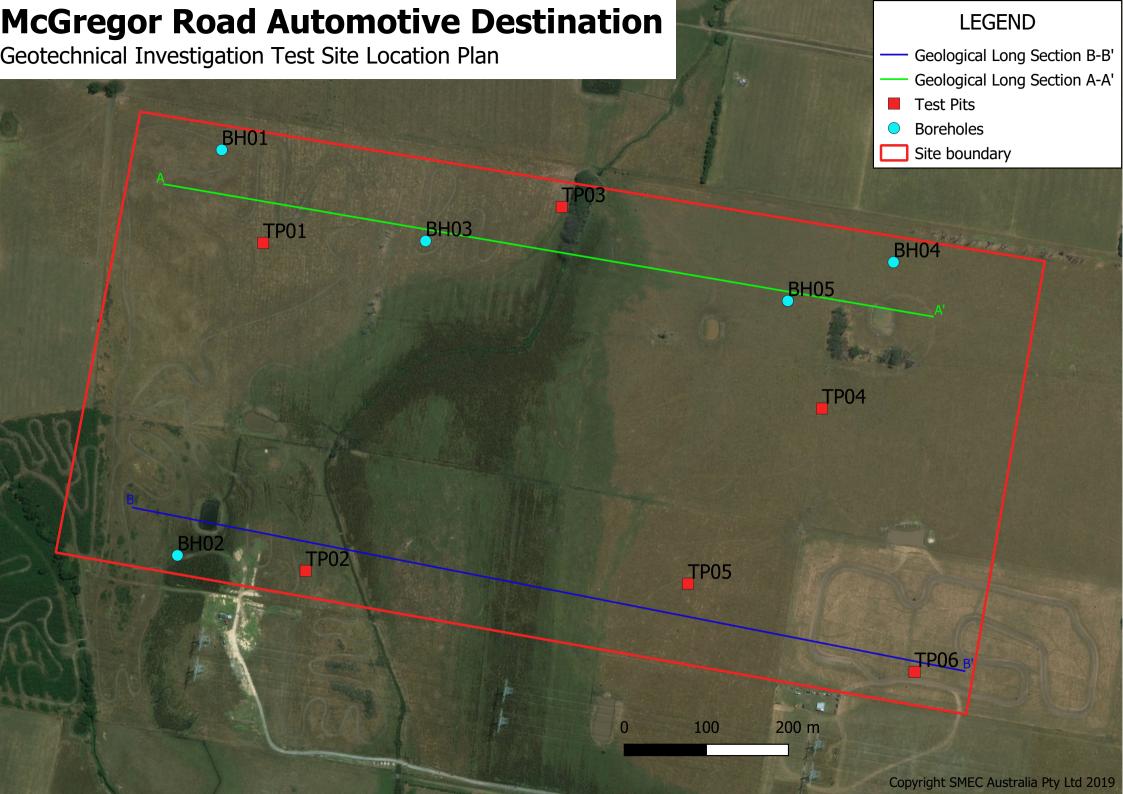
It is recommended that if any construction activities are undertaken based on the information provided, construction inspection of the footings / pile excavations be undertaken by a SMEC geotechnical engineer to confirm that the ground conditions are consistent with those anticipated.

7 Conclusion

From the findings of the site investigations, factual information and recommended geotechnical parameters for prelimnary design are provided in this report.

Depending on the final development plans for the site, should any design changes occur during the next development phase then further targeted investigations may be required to confirm ground conditions across the site.

Additional geotechnical investigations may be required after preliminary design stage of the development to delineate subsurface conditions if affected for pile foundation.


8 Limitation

This report has been prepared by SMEC, on behalf of Podium One for the McGregor Road Automotive Destination project. This report has been prepared in accordance with the Services Contract between SMEC and Podium One. This report is prepared exclusively for Podium One for this project only. This report should not be used for other purposes and by any third party.

This report has been prepared based on data available to SMEC at the time of preparing this report. The subsurface conditions provided in this report are indicative only and are based on available sub-surface testing records (i.e. borehole, standard penetration tests). The sub-surface testings were undertaken at the specific location on specific time and only to the depths investigated. The accuracy of advice and sub-surface conditions provided in this report may be different from the actual sub-surface conditions due to the variable geological processes and undetected sub-surface conditions between the test points.

This report should be used as an entirety and the sections of this report should not be used separately. SMEC cannot be held responsible for any interpretations, decisions and conclusions made by others based on the contents provided in this report. SMEC endeavoured to identify the risks associated with the design and construction. SMEC cannot be held responsible for any risks associated with design and constructions. There may be risks associated with the design and constructions that are not documented or discussed in this report due to the unforeseen site conditions, variation of sub-surface conditions or beyond the knowledge of SMEC designers. However, should there be any risks arise during the design and/or construction SMEC would be endeavoured to carry out a risk assessment of the potential hazards, if requested.

Appendix A Test Site Location Plan

Appendix B Borehole/Test Pit Logs and Explanatory Notes

Explanatory Notes of Abbreviations and Terms

Used on Borehole and Excavation Logs

General

Information obtained from site investigations is recorded on log sheets. The "Engineering Log - Borehole or Non Cored Borehole" presents data from drilling operations where a core barrel has not been used to recover material, and information is based on a combination of regular sampling and in-situ testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Engineering Log - Cored Borehole" presents data from drilling operations where a core barrel has been used to recover material - commonly rock. The "Engineering Log - Excavation" presents data obtained on the subsurface profile from observations of excavations, either natural or man-made. It may contain a scaled, graphical presentation of the typical excavation profile. Refusal of the excavation plant is noted should it occur.

As far as is practicable, the data contained on the log sheets is factual. Some interpretation is inevitable in the assessment of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classification is generally based on AS1726-2017.

Drilling Method

Code	Description	
ADT	Auger drilling with TC-bit	
ADV	Auger drilling V-bit	
AS	Auger screwing	
AT	Air track	
CA	Casing advancer	
CC	Concrete core	
CTR	Cable tool rig	
DB	Wash bore drag bit	
НА	Hand auger	
HAND	Hand methods	
HF	Hollow flight auger	
HMLC	Diamond core 62mm diameter	
HQ	Wire line core barrel 64mm diameter	
HQ3	Wire line core barrel 62mm diameter	
NDD	Non destructive drilling	
NMLC	Diamond core 52mm diameter	
NQ	Wire line core barrel 47mm diameter	
NQ3	Wire line core barrel 45mm diameter	
PT	Continuous push tube	
PQ	Wire line core barrel 85mm diameter	
RAB	Rotary air blast	
RC	Reverse circulation	
RD	Rotary blade or drag bit	
RR	Rock roller	
RT	Rotary tricone bit	
SD	Sonic drilling	
TBX	Tube-X	
VC	Vibro-core drilling	
WB	Wash bore drilling	

Drilling Penetration

Ease of penetration in non-core drilling

VE	Very easy	
E	Easy	
F	Firm	
Н	Hard	
VH	Very hard	

Support and Casing

Code	Description	Code	Description
С	Casing	Hw	114.3 mm
M	Mud	NW	88.9 mm
W	Water	PVC	150 mm

Core Run

Core lifts are identified by a line and depth with core loss per run as a percentage. Core loss is shown in the core run unless otherwise indicated.

Defect Spacing

The average distance between defects is measured parallel to the core axis in mm and may be expressed as a range or average.

Angle / Orientation

Angle from horizontal and orientation to magnetic north.

For inclined cored boreholes the Alpha and Beta angles are presented for orientated core. Alpha (α) is measured relative to the core axis, whilst Beta (β) is measured clockwise from the reference line looking down the core axis in the direction of drilling.

Excavation Method

N	Natural exposure		
X	Existing excavation		
ВВ	Tractor mounted backhoe bucket		
EX	Hydraulic excavator		
EH	Hydraulic excavator with hammer		
В	Bulldozer blade		
R	Ripper		

Water / Drilling Fluid

The drilling fluid used is identified and loss of return to the surface is estimated as a percentage, generally of each core lift.

Symbol	Description
—	Water inflow
—	Water outflow
	Water level: during drilling or immediately after completion of drilling
	Groundwater level with date observed prior to introduction of fluids or after standpipe construction
Not observed	The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole / test pit.
Not encountered	The borehole / test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole / test pit been left open for a longer period.

Colour

The colour of a soil or rock is described in a moist/wet condition using simple terms, such as black, white, grey, red, brown, orange, yellow green or blue. These are modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours are described as a combination of these colours (e.g. orange-brown). Where a soil or rock consists of a primary colour with a secondary mottling it is described as (primary colour) mottled (first colour) and (secondary colour).

Description of Soil

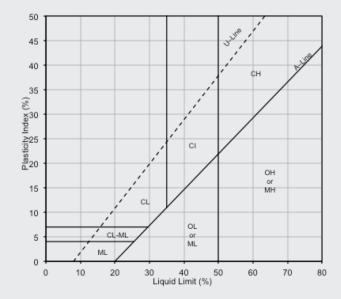
- Soil name (BLOCK LETTERS)
- ii. Plasticity or particle size of soil
- Colour iii.
- Secondary soil components names & estimated proportions, iv. including their plasticity / particle characteristics, colour
- Minor soil components name, estimated proportions, including their plasticity / particle characteristics, colour
- Other minor soil components
- Moisture condition
- viii. Consistency / density
- Structure of soil, geological origin
- Additional observations

Particle Size

Term		Grain Size	
Clay		< 2 µm	
Silt		2 – 75 μm	
	Fine	0.075 – 0.21 mm	
Sand	Medium	0.21 – 0.6 mm	
	Coarse	0.6 – 2.36 mm	
	Fine	2.36 – 6.7 mm	
Gravel	Medium	6.7 – 19 mm	
	Coarse	19 – 63 mm	
Cobbles		63 – 200 mm	
Boulders		> 200 mm	

Fine Grained and Coarse Grained Soils

	Term	Description
Fine Grained Soil (cohesive)		More than 35% of the material less than 63 mm is smaller than 0.075 mm (silts and clays)
	Coarse Grained Soil	More than 65% of the material less than 63 mm is larger than 0.075 mm (sands, gravels and cobbles)


Descriptive Terms for Secondary and Minor Components

	In coarse grained soils				In fine grained soils	
Designation of Components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand / Gravel	Terminology
	≤5	trace	≤15	trace	≤15	trace
Minor	>5, ≤12	with	>15, ≤30	with	>15, ≤30	with
Secondary	>12	prefix	>30	prefix	>30	prefix

Plasticity – Fine Grained Soils

Liquid Limit (LL) %	Description	
≤ 35	Low plasticity (L)	
>35 to ≤ 50	Medium plasticity (I)	
> 50	High plasticity (H)	

Plasticity Chart-Fine Grained Soils

Consistency Terms – Fine Grained Soils

Term	Undrained shear strength (kPa)	Indicative SPT (N) Blow Count	Field Guide to Consistency
Very Soft (VS)	<12	0 – 2	Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Soft (S)	12 – 25	2 – 4	Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Firm (F)	25 – 50	4 – 8	Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Stiff (St)	50 – 100	8 – 15	Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Very Stiff (VSt)	100 – 200	15 –30	Readily indented by thumb nail, still very tough
Hard (H)	>200	>30	Indented with difficulty by thumb nail, brittle
Friable (Fr)	-		Can be easily crumbled or broken into small pieces

Density Terms – Coarse Grained Soils

Term	Density Index (%)	SPT (N) Blow Count	
Very Loose (VL)	< 15	0 – 4	
Loose (L)	15 – 35	4 – 10	
Medium Dense (MD)	35 – 65	10 – 30	
Dense (D)	65 – 85	30 – 50	
Very Dense (VD)	> 85	>50	

Particle Characteristics - Coarse Grained Soils

Term	Description
Well Graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

Angularity - Coarse Grained Soils

	Rounded
	Sub-rounded
00	Angular
O D	Sub-angular

Origin of Soil

Formed by humans
Formed by wind
Formed by streams and rivers
Formed on slopes (talus)
Formed in marine environments
Formed in lakes
Formed by weathering insitu

Soil Moisture

	Term	Code	Description
ō	Dry	D	Looks and feels dry and free running
Coarse Grained	Moist	М	Soil feels cool, darkened in colour, soils tend to stick together, soil grains do not run freely through fingers and no visible free water
Coa	Wet	W	Soil feels cool, darkened in colour, soils tend to stick together, free water on remoulding
ned	Moist, Less than Plastic Limit	W < PL	Hard and friable or powdery, moisture content well below Plastic Limit
	Moist, Near Plastic Limit	W ≈ PL	Soil feels cool, darkened in colour, can be moulded, near Plastic Limit
Fine Grained	Moist, Wet of Plastic Limit	W > PL	Soil feels cool, dark, usually weakened, free water, moisture content well above Plastic Limit
	Wet, Near Liquid Limit	W ≈ LL	Soil exudes easily
	Wet, Wet of Liquid Limit	W > LL	Soil behaves as a liquid

Boundary Classifications

Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well graded gravel-sand mixture with clay binder.

Graphic Symbols

	Asphalt		МН
	СН	555	ML
1/2	CI	<u>#</u> 4 6 46	ОН
	CL	12 전 : 지위 경	OL
##	Concrete	10 34 : 55 8	PT
***	Fill	<i>%</i> .	SC
200	GC	%	SM
3900 8900	GM	33	SP
000	GP	F-1	SW
0.0	GW		

Soil Classification

Soils are described in general accordance with AS1726-2017 as shown below.

		N PROCEDU than 63 mm ar	RES nd basing fractions on es	timated mass)		GROUP SYMBOL	PRIMARY NAME
0.075	tion is	CLEAN GRAVELS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		GW	GRAVEL	
is larger tha	9/	GRAVELS More than half of coarse fraction is larger than 2.36 mm	(Little or no fines)		ize or a range of sizes with zes missing, not enough fines s, no dry	GP	GRAVEL
ım and	aked ey	S n half of n 2.36 r	GRAVELS w/ FINES	'Dirty' materials with none to medium dry	excess of non-plastic fines, strength; ≥ 12% silty fines	GM	SILTY GRAVE
than 63 m	ole to the n	GRAVEL More thar larger tha	(Appreciable amount of fines)		excess of plastic fines, strength; ≥ 12% clayey fines	GC	CLAYEY GRAVEL
erial is less	rial is less inguishab	action is	CLEAN SANDS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SW	SAND
the material less than More than 65% of the material is less than 63 mm and is larger than 0.075 mm A particle size of 0.075 is about the smallest size distinguishable to the naked eye	SANDS More than half of coarse fraction is smaller than 2.36 mm	(Little or no fines)	Predominantly one size or a range of sizes with more intermediate sizes missing, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SP	SAND	
	san half than 2.0	SANDS w/ FINES (Appreciable	'Dirty' materials with excess of non-plastic fines, none to medium dry strength; ≥ 12% silty fines		SM	SILTY SAND	
COARSE More than mm	s about	SANDS More tha smaller t	amount of fines)	'Dirty' materials with excess of plastic fines, medium to high dry strength; ≥ 12% clayey fines		SC	CLAYEY SANE
an)75 is	IDENTIFIC	ATION PROCEDURE	S ON FRACTIONS <	0.075 mm		
less th	ze of 0.(V	DRY STRENGTH	DILATANCY	TOUGHNESS	GROUP SYMBOL	PRIMARY NAME
erial	ile siz	Init,	None to low	Slow to rapid	Low	ML	SILT
FINE GRAINED SOILS More than 35% of the material less than 63 mm is less than 0.075 mm A particle size of 0.079	SILTS AND CLAYS Liquid Limit < 50%	Medium to high	≥ 12% clayey fines	Medium	CL, CI	CLAY	
		Low to medium	Slow	Low	OL	ORGANIC SIL	
	SILTS AND CLAYS Liquid Limit > 50%	Low to medium	None to slow	Low to medium	MH	SILT	
		High to very high	None	High	CH	CLAY	
		Medium to high	None to very slow	Low to medium	ОН	ORGANIC CLAY	
HIGHLY OF	RGANIC SO	LS: readily ide	entified by colour, odou	ir, spongy feel and fred	uently fibrous texture	PT	PEAT

Description of Rock

- Rock name (BLOCK LETTERS)
- ii. Grain size and mineralogy
- iii. Colour
- Fabric and texture iv.
- Features, inclusions, minor components, moisture content and durability
- Strength
- vii. Weathering and/or alteration
- viii. Rock mass properties discontinuities and structure of rock
- Interpreted stratigraphic unit
- Additional observations including geological structure

Simple rock names are used to provide a reasonable engineering description, rather than a precise geological classification. The rock name is chosen by considering the nature and shape of the grains or crystals, the texture and fabric of the rock material, the geological structure and setting, and information from the geological map of the area. Further guidance on the naming of rocks can be found in AS1726-2017, Tables 15, 16, 17 and 18. Typical rock types are described below, though subject to site specific variations.

Rock Type	Description	Example of Rock Name
Sedimentary	Formed by deposited beds of sediments, have grains that are cemented together and often rounded. Significant porosity	COMMON: Conglomerate, Breccia, Sandstone, Mudstone, Siltstone, Claystone ≥90% CARBONATE: Limestone, Dolomite, Calcirudite, Calcarenite, Calcisiltite, Calcilutite PYROCLASTIC: Agglomerate, Volcanic Breccia, Tuff
Igneous	Formed from molten rock and have a crystalline texture. Typically massive and low porosity. Rock types are from coarse to fine grained.	HIGH QUARTZ CONTENT: Granite, Microgranite, Rhyolite MODERATE QUARTZ CONTENT: Diorite, Microdiorite, Andesite LOW QUARTZ CONTENT: Gabbro, Dolerite, Basalt
Metamorphic	Formed when rocks are subject to heat and/or pressure and have typically have directional fabric. Typically have low porosity and crystalline structure. Rock types are from coarse to fine grained	FOLIATED: Gneiss, Schist, Phyllite, Slate NON-FOLIATED: Marble, Quartzite, Serpentinite, Hornfels
Duricrust	Formed as part of a weathering profile and show evidence of being cemented in situ. Cementation is typically irregular and exhibits replacement textures.	Ferricrete (Iron oxides and hydroxides) Silicrete (Silica) Calcrete (Calcium carbonate) Gypcrete (Gypsum)

Note: () denotes dominant cementing mineralogy

Terms describing dominate grain size in sedimentary rocks.

Term	Grain size
Coarse	Mainly 0.6 mm to 2 mm
Medium	Mainly 0.2 mm to 0.6 mm
Fine	Mainly 0.06mm (just visible) to 0.2 mm

Terms describing dominate grain size in igneous and metamorphic rocks

Term	Grain size
Coarse	Mainly greater than 2 mm
Medium	0.06 mm to 2 mm
Fine	Mainly less than 0.06 mm (just visible) to 0.2mm

Texture and Fabric Sedimentary rocks

Thickness	Bedding Term
< 6 mm	Thinly laminated
6 – 20 mm	Laminated
20 – 60 mm	Very thinly bedded
60 – 200 mm	Thinly bedded
0.2 – 0.6 m	Medium bedding
0.6 – 2 m	Thickly bedded
> 2 m	Very thickly bedded

Igneous rocks

Term	Definition
Amorphous	Indicates that the rock has no obvious crystalline structure
Crystalline	A regular molecular structure, showing crystal structure and symmetry.
Cryptocrystalline	The texture comprises crystals that are too small to recognise under an ordinary microscope. Indistinctly crystalline.
Porphyritic	Indicates the presence of phenocrysts (relatively large crystals in a fine grained ground mass) in igneous rocks.
Flow banded	Indicates visible flow lines in volcanic rocks and some intrusive rocks
Glassy	Entirely glass like. No crystalline units and without crystalline structure.
Vesicular	A texture of volcanic rocks that indicates the presence of vesicles (small gas bubbles). Where the vesicles are filled with a mineral substance they are termed Amygdales and the texture is Amygdaloidal.

Metamorphic

Term	Definition
Foliation	The parallel arrangement of minerals due to metamorphic process, which shall be defined by the terms in weak, moderate and strongly foliated.
Porphyroblastic	A texture indicating the presence of porphyroblasts (larger crystals formed by recrystallization during metamorphism, such as garnet or staurolite in a mica schist).
Cleavage	A type of foliation developed in fine grained metamorphic rocks such as slates.

Bedding and Fabric Development

Туре	Definition
Massive	No obvious development of bedding – rock appears homogeneous
Poorly Developed	Bedding is barely obvious as faint mineralogical layering or grain size banding, but bedding planes are poorly defined.
Well Developed	Bedding is apparent in outcrops or drill core as distinct layers or lines marked by mineralogical or grain size layering.
Very Well Developed	Bedding is often marked by a distinct colour banding as well as by mineralogical or grain size layering.
Indistinct fabric	There is little effect on strength properties
Distinct Fabric	The rock may break more easily parallel to the fabric

Rock Strength

Term (Code)	UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide to Strength
Very Low (VL)	0.6 – 2	> 0.03 to ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low (L)	2 - 6	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium (M)	6 - 20	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High (H)	20 - 60	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High (VH)	60 -200	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High (EH)	>200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock strength is assessed by laboratory Uniaxial Compressive Strength (UCS) testing and/or Point Load Strength Index (PLT) testing to obtain the Is₍₅₀₎ the strength table implies a 20 times correlation between Is₍₅₀₎ and UCS used for classification. Note however, multiplier may range from 4 (e.g. some carbonated and low strength rocks) to 40 (e.g. some igneous rocks and/or some high strength rocks). A site specific correlation based on testing, previous investigation or literature may be used where available. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

Visual Log

A diagrammatic plot of defects showing type, spacing and orientation in relation to the core axis.

	Defects open in situ or clay sealed
	Defects closed in-situ
•••••	Drill induced fractures or handling breaks
	Infilled seam

Rock Weathering and or Alteration Classification

Term (Code)		Definition	
Residual soil (RS)		Soil developed on extremely weathered rock. The rock mass structure and substance fabric are no longer evident but the soil has not been significantly transported.	
Extremely v (EW) Extremely a		Rock is weathered to s that it has 'soil' proper disintegrates or can be but the texture of origin	ties, i.e, it either e remoulded in water,
Highly weathered (HW) Highly Altered (HA)	Distinctly weathered (DW)* Distinctly Altered (DA)	Whole rock material is discoloured usually by extent that iron staining or bleaching and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable	*Where is it not practical to distinguish between 'HW' and MW'. Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may
Moderately weathered (MW) Moderately Altered (MA)		Whole rock material is discoloured usually by staining that original colour of the fresh rock is no longer recognisable	be decreased due to deposition of weathering products in pores
Slightly wea	thered (SW) red (SA)	Rock is slightly discold or no change of streng	
Fresh rock (F)		Rock shows no sign of staining.	f decomposition or

Rock Core Recovery

TCR = Total Core Recovery (%)

Length of Core Recovered x 100 Length of Core run

SCR = Solid Core Recovery (%)

Sum Length of Cylindrical Core Recovered x 100 Length of Core run

RQD = Rock Quality Designation (%)

Sum Length of Sound Core Pieces > 100mm in length

Length of Core run

x 100

Types of Discontinuities

Term	Code	Description
Parting	Pt	A defect parallel or sub-parallel to a layered arrangement of mineral grains or micro-fractures, which has caused planar anisotropy in the rock substance.
Joint	Jt	A defect across which the rock substance has little tensile strength, but that is not related to textural or depositional features within the rock substance.
Sheared Zone	SZ	A zone with roughly parallel planar boundaries of rock substance consisting of closely spaced joints with smooth slickensided surfaces often curved. The joints divide the rock mass into unit blocks usually of lenticular or wedge shape.
Crushed Zone	CZ	A zone or seam with roughly parallel planar boundaries of rock substance composed of disoriented, usually angular, fragments of the host rock substance
Seam	Se	A zone or seam with roughly parallel boundaries, infilled by soil (IS) or decomposed rock (DS)
Fault	F	A fracture (defect) in rock along which there has been an observable amount of displacement.
Vein	Ve	A zone of minerals intruded into a joint or fissures.

Type of Structures

Term	Code	Description
Bedding	Bg	A layered arrangement of minerals parallel to the surface of deposition which has caused planar anisotropy in the rock substance.
Cleavage	С	An alignment of fine grained minerals caused by deformation.
Schistosity	SH	A layered arrangement of minerals to each other
Foliation	Fo	A planar alignment of minerals caused by deformation.
Void	Vo	A completely empty space
Dyke	DK	Sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature
Sill	SI	A sill is an intrusion of magma that spreads underground between the layers of another kind of rock
Contact	Cn	A contact between intrusive and stratigraphic units.
Boundary	Bd	A distinct boundary between two stratigraphic units

Note: Drill breaks (DB) and handling breaks (HB) are not included as natural discontinuity.

Discontinuity Spacing

Spacing (mm)	Description
>6000	Extremely Widely Spaced
2000 - 6000	Very Widely Spaced
600 - 2000	Widely Spaced
200 - 600	Medium Spaced
60 - 200	Closely Spaced
20 - 60	Very Closely Spaced
<20	Extremely Closely Spaced

Discontinuity Planarity

Code	Description
Cu	Curved – A defect with a gradual change in orientation
lr	Irregular – A defect with many sharp changes in orientation
PI	Planar – Defect forms a continuous plane without variation in orientation
St	Stepped – A defect with distinct sharp steps or step
Un	Undulose – A defect with undulations
Vu	Vuggy – An open void with crystallisation
Wv	Wavy - A wavy defect surface

Discontinuity Roughness

Abbreviation	Description
Ro	Rough – Many small surface irregularities generally related to the grain size of the parent rock
Sm	Smooth – Few or no surface irregularities related to the grain size of the parent rock
Po	Polished – Planes have a distinct sheen or a smoothness
SI	Slickensided – Planes have a polished, grooved or striated surface consistent with differential movement of the parent rocs along the plane
VR	Very rough – many large surface irregularities, amplitude generally more than 1mm

Infill Material

Code	Name	Code	Name
Ca	Calcite	Gp	Gypsum
Ch	Chlorite	Mn	Manganese
Cl	Clay	MS	Secondary mineral
Со	Coal	Ру	Pyrite
Fe	Limonite / Ironstone	Um	Unidentified mineral
Fe CI	Iron oxide clay	Qz	Quartz
FI	Feldspar	Х	Carbonaceous

Discontinuity Observation

Term	Code	Description
Clean	CN	No visible coating or infill
Stain	SN	No visible coating or infill but surfaces are discoloured by mineral staining
Veneer <1 mm	VNR	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.
Coating >1 mm to <10 mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.
Filling (Filled) >10 mm	FLD	A visible filling of soil or mineral substance. Describe composition and thickness.

Samples and Field Tests

Code	Description
В	Bulk disturbed sample
BLK	Block sample
С	Core sample
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
FP	Pressuremeter
G	Gas sample
Н	Hydraulic fracturing
HP	Hand penetrometer test
I	Impression device
Is ₍₅₀₎	Point Load Index
K	Permeability
LB	Large bulk disturbed sample
N	Standard penetration test result (N* denotes SPT sample recovery)
0	Core orientation
Р	Piston sample
PID	Photoionisation detector reading in ppm
R	Hammer bouncing / refusal
SPT	Standard Penetration Test
U	Undisturbed push in sample
UCS	Uniaxial Compressive Strength
U50	Undisturbed tube sample (50 mm diameter)
U75	Undisturbed tube sample (75 mm diameter)
VS	Vane shear test
• (A)	Axial Test
O (D)	Diametral Test
	Irregular Lump test

Laboratory Tests

Code	Description
ACM	Asbestos Containing Material
CD	Consolidated Drained
CU	Consolidated Undrained
LL	Liquid Limit
LS	Linear Shrinkage
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PBT	Plate Bearing Test
PI	Plasticity Index
PL	Plastic Limit
PSD	Particle Size Distribution
$ ho_{\scriptscriptstyle b}$	Bulk Density
$ ho_{\scriptscriptstyle p}$	Particle Density
$ ho_{\scriptscriptstyle d}$	Dry Density
UU	Undrained Unconsolidated

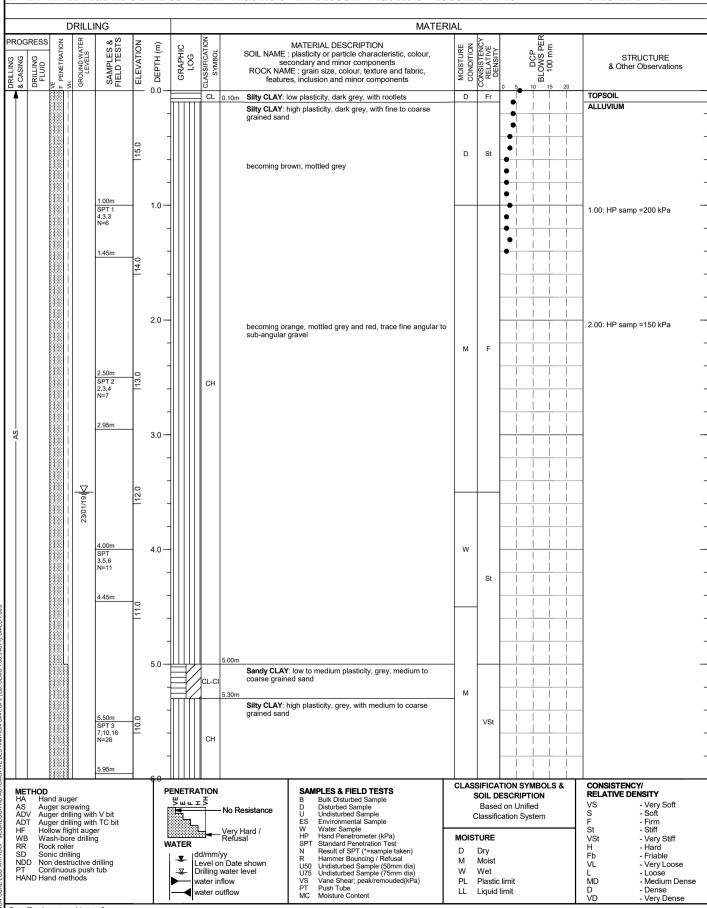
Backfill / Standpipe Detail

Symbol	Description	Symbol	Description
	Cement seal		Filter pack: sand filter
	Grout backfill		Filter pack: gravel filter
	Blank pipe		Bentonite seal
	Slotted pipe		Cutting – excavated material backfill
	Surface Completion: Monument Above Ground		Surface Completion: Gatic Ground Monument

Completion Details

Туре	Description
Collapse	Exploratory hole collapsed before reaching planned depth
Equipment Failure	Boring or excavator equipment operational failure
Flooding	Flooding of excavation
Machine Limit	Limit of machine capability reached
Obstruction	Obstruction preventing further advancement
Possible services	Indication of possible services below
Services present	Services encountered during exploratory hole
Squeezing	Hole squeezing boring equipment
Target Depth	Depth reached as planned
Target Depth Instrumentation Installed	Depth reached as planned instrumentation installed
Target Depth Standpipe Installed	Depth reached as planned open standpipe constructed
Material Refusal	Material preventing further advancement

PROJECT: McGregor Road Automotive Destination


HOLE NO : **BH01** PROJECT NUMBER: 30041864

SHEET: 1 OF 2

FINAL DEPTH: 10.45 m POSITION : E: 364311.0, N: 5782089.0 (MGA94 Zone 55) SURFACE ELEVATION: 15.60 (m AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Podium 1

LOCATION: Pakenham

SMEC AUSTRALIA

SMEC

PROJECT: McGregor Road Automotive Destination

HOLE NO : BH01 PROJECT NUMBER : 30041864

SHEET: 2 OF 2 FINAL DEPTH: 10.45 m

POSITION : E: 364311.0, N: 5782089.0 (MGA94 Zone 55) SURFACE ELEVATION : 15.60 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

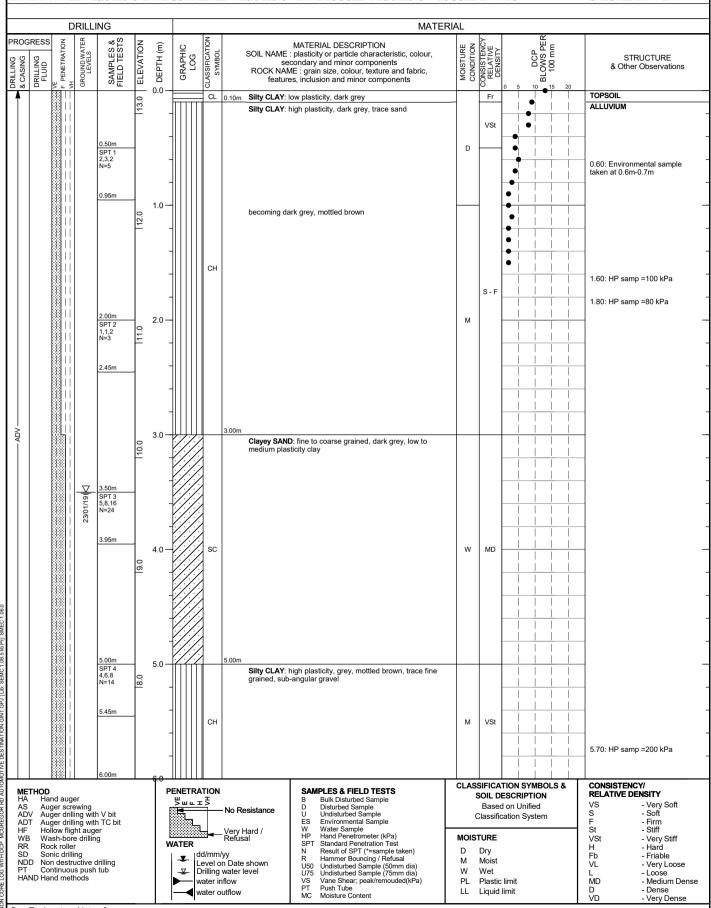
RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

		DR	RILLII	NG					MATER	RIAL			
DRILLING & CASING DRILLING	FLUID	VH VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	ELEVATION	.9 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	MATERIAL DESCRIPTION SOIL NAME : plasticity or particle characteristic, colour, secondary and minor components ROCK NAME : grain size, colour, texture and fabric, features, inclusion and minor components		CONSISTENCY RELATIVE DENSITY	BLOWS PER	STRUCTURE & Other Observations
				7.00m	0.6]	- - - 7.0 —	-	СН	Silty CLAY: high plasticity, grey, with medium to coarse grained sand (continued) 7.00m	М	VSt		ALLUVIUM
				SPT 4 11,13,26 N=39 7.45m	18.0	- 8.0		CL-CI	Sandy CLAY: low to medium plasticity, grey, mottled brown and red, fine to coarse grained sand, trace fine to medium grained, sub-rounded to sub-angular gravel		н		
AS-			-	8.50m SPT 5 18,16,24 N=40	17.0	9.0 —			Clayey SAND: fine to coarse grained, brown, mottled red and grey, low to medium plasticity clay, trace fine gravel	w			
				10.00m SPT 6 26,30,32 N=62	0.91	- - 10.0 — -		SC	10.45m		D		
					14.0	- 11.0 — - -			Hole Terminated at 10.45 m Target Depth				
AS ADV ADT HF WB RR SD NDD PT	Hand a Auger Auger Hollow Wash- Rock of Sonic of Non de Continu	auger screw drilling flight bore coller drilling estruc uous metho	ving g with g with auge drilling tive d push	TC bit r I rilling tub			¥ V	Id/mm/	n Date shown U50 Undisturbed Sample (50mm dia) water level U75 Undisturbed Sample (75mm dia) VS Vane Shear; peak/remouded(kPa)		SOIL D Base		CONSISTENCY/ RELATIVE DENSITY VS

CLIENT : Podium 1 LOCATION : Pakenham

PROJECT: McGregor Road Automotive Destination


HOLE NO : BH02 PROJECT NUMBER : 30041864

SHEET: 1 OF 2 FINAL DEPTH: 9.95 m

POSITION : E: 364259.0, N: 5781590.0 (MGA94 Zone 55) SURFACE ELEVATION : 13.20 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

CLIENT

: Podium 1

LOCATION: Pakenham

PROJECT: McGregor Road Automotive Destination

CLIENT : Podium 1 LOCATION : Pakenham

HOLE NO: BH02 PROJECT NUMBER: 30041864

SHEET: 2 OF 2 FINAL DEPTH: 9.95 m

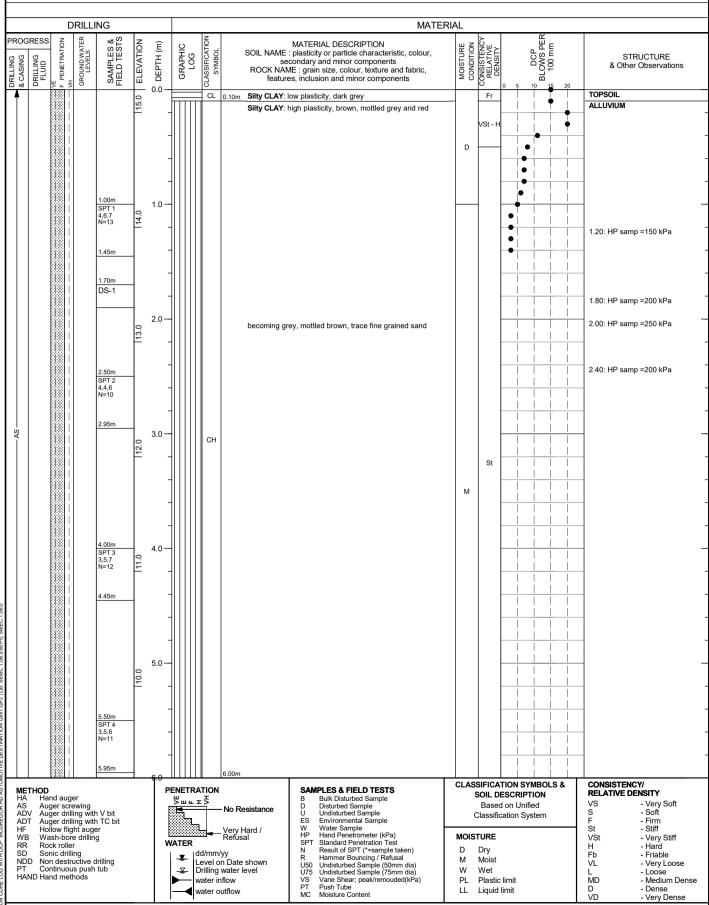
POSITION : E: 364259.0, N: 5781590.0 (MGA94 Zone 55) SURFACE ELEVATION: 13.20 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

Silv_CLAY high plasticity, grey, mottled brown, trace fine grained and motion of the components of the	DATEO	DRILLING MATERIAL															
Solution								l _z			MATERI		L		Ω.		T
DS-1	<u> </u>	VE VE F PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	ELEVATION		GRAPHIC	CLASSIFICATION	SOIL NAME se ROCK NAI featur	E : plasticity or particle characteristic econdary and minor components .ME : grain size, colour, texture and	fabric,	MOISTURE	CONSISTENCY RELATIVE DENSITY	0 5	В		STRUCTURE & Other Observations
Size					7.0	6.0 —			Silty CLAY:	high plasticity, grey, mottled brown, b-angular gravel (continued)	trace fine						ALLUVIUM
## ACTION Some Top Petertation Some To		6.50m SPT 5 38.11 becoming brown with fine to medium grained sand									ınd						6.30: HP samp =250 kPa
7.0				N=19		-	-										_
According to the company According to the co		İ		6.95m	_	7.0	-						VSt		i		_
9.0 — St. 1					16.0	-	_										
St. 7 N=13 Decoming grey St. 7		3666 3666 3666				-	-										-
St. 7 N=13 Decoming grey St. 7						-											-
St. 7 N=13 Decoming grey St. 7	l NOV					80-		СН				M					
9.0 — 9.00: HP samp =300 kPa St		8888 8888 8888		SPT 6 5,6,7 N=13	2.0	-	-		becoming gi	grey							
9.00 - 9.00: HP samp =300 kPa 9.50m				8.45m		-	-										_
9.50m SPT7 6,8,12 N=20 10.0 Hole Terminated at 9.95 m Target Depth						-	-						St				
9.50m SPT7 6,8,12 N=20 10.0 Hole Terminated at 9.95 m Target Depth		888 888 888				-	-										
becoming grey, mottled brown, trace fine to coarse grained VSt					4.0	9.0 —	-										9.00: HP samp =300 kPa
SPT7 6.8.12						_											
9.95m 10.0 — Hole Terminated at 9.95 m Target Depth		8888 8888 8888		SPT 7 6,8,12		_	-			grey, mottled brown, trace fine to coa	rse grained		VSt				
10.0 Hole Terminated at 9.95 m Target Depth		0000				-	-										-
		1111		9.95m		10.0 —			Hole Termin	nated at 9.95 m th							
					3.	-											
METHOD HA Hand auger ADT Auger drilling with V bit ADT Auger drilling Wash-bore drilling RR Rock roller RR Roc	O CONTRACTOR OF THE CONTRACTOR	1111				-											
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WEW Wash-bore drilling RR Rock roller SD Sonic drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling NDD Non Non destructive drilling	owec.	1111				_											
METHOD HA Hand auger ADV Auger drilling with V bit ADV Auger drilling with V bit ADV Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling	90000	1111				11.0 —	-										
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger W8 Wash-bore frilling W8 Wash-bore frilling W8 RR Rock roller SD Sonic drilling NDD Non destructive drilling	CIDE: OEM	1111			12.0	-											
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger W8 Wash-bore fulling W8 Wash-bore fulling W8 Wash-bore fulling W8 Wash-bore fulling NDD Non destructive drilling	301100	1111				-											
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger W8 Wash-bore drilling W8 Wash-bore drilling W8 Wash-bore drilling NDD Non destructive drilling		1111				-									 		
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with To bit HF Hollow flight auger WB Wash-bore drilling WB Wash-bore drilling Sonic						- 12 0											
WB Wash-bore frilling WB Refusal WB Rock roller SD Sonic drilling NDD Non destructive drilling	METHOD READ HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT AUger drilling with TC bit HE Hellow flight auger METHOD PENETRATION SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample ES Environmental Sample W Water Sample							RIPTION Unified	.S &	RELATIVE DENSITY VS - Very Soft S - Soft F - Firm							
NDD Non destructive drilling Level on Date shown K Hammer Bouncing / Refusal M Moist VL - Viery Loos	WB Wash-bore drilling RR Rock roller SD Sonic drilling WATER WATER WATER					W		dd/mm		HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT (*=sample tak	en)	D	Dry				VSt - Very Stiff H - Hard
PT Continuous push tub HAND Hand methods Drilling water level	NDD N PT C HANDH	NDD Non destructive drilling PT Continuous push tub					Level o Drilling	on Date shown water level	U50 Undisturbed Sample (50mm U75 Undisturbed Sample (75mm VS Vane Shear; peak/remouded	dia) dia)	M Moist W Wet					VL - Very Loose L - Loose	
water outflow PT Push Tube MC Moisture Content LL Liquid limit D - Dense VD - Very Den See Explanatory Notes for	See Evol	lanator	/ Note	s for						PT Push Tube	·						D - Dense
details of abbreviations & basis of descriptions. SMEC AUSTRALIA		fabbrev	viation	S						SMEC AUSTRAI	LIA						SM

PROJECT: McGregor Road Automotive Destination


HOLE NO : BH03 PROJECT NUMBER : 30041864

SHEET: 1 OF 2 FINAL DEPTH: 10.45 m

POSITION : E: 364554.0, N: 5781982.0 (MGA94 Zone 55) SURFACE ELEVATION : 15.20 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

CLIENT

: Podium 1

LOCATION: Pakenham

PROJECT: McGregor Road Automotive Destination

CLIENT : Podium 1 LOCATION : Pakenham

HOLE NO: BH03 PROJECT NUMBER: 30041864

SHEET: 2 OF 2 FINAL DEPTH: 10.45 m

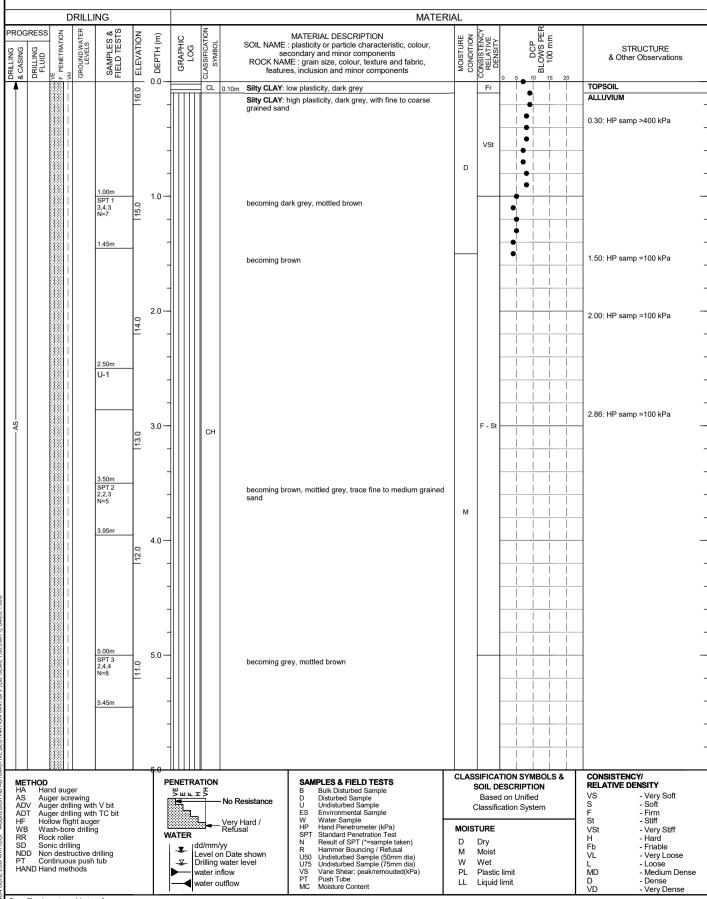
POSITION : E: 364554.0, N: 5781982.0 (MGA94 Zone 55) SURFACE ELEVATION: 15.20 (m AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: Drill Rig MOUNTING : track HOLE DIA: 100 mm CONTRACTOR: Apex

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

	DRIL	LING							MATER	_					
BRILLING SS CASING DRILLING FLUID FLUID	VE F PENETRATION VH GROUND WATER	SAMPLES & FIELD TESTS	ELEVATION	, DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NAME se ROCK NAM featur	MATERIAL DESCRIPTION : plasticity or particle characterisecondary and minor components ME: grain size, colour, texture ares, inclusion and minor compone	ıd fabric,	MOISTURE	CONSISTENCY RELATIVE DENSITY	0 5	BLOWS PER	-	STRUCTURE & Other Observations
			0.6	6.0 — - - -			Silty CLAY:	high plasticity, grey, mottled brow d (continued)	n, trace fine	М	St				6.20: HP samp =200 kPa 6.70: HP samp =250 kPa
	- V istr	7.00m SPT 5 6,10,9 N=19 7.45m	18.0	7.0 — - - -		СН	grained sand	ained angular gravel, trace fine to	coarse	w	VSt				
AS.		8.50m SPT 6 30.25,22 N=47	17.0	8.0 — - - - 9.0 —		CL-CI	medium grai becoming gi	rey, mottled brown		M	Н				
V		10.00m SPT 7 12,15,11 N=26	- 1 20 -	- - 0.0 — - -		ML	10.45m Hole Termin Target Depti	nated at 10.45 m h			VSt				
METHOD HA Han AS Aug ADV Aug ADT Aug HF Holl WB Was RR Roc SD Son NDD Non PT Con HAND Han			14.0	- 1.0 — - -											
METHOD HA Han AS Aug ADV Aug HF Hold WB Was RR Roc SD Son NDD Non PT Con HAND Han	low flight a sh-bore dri k roller nic drilling n destructiv ntinuous pu	lling re drilling ish tub	- 4		₹	dd/mm/ Level o	n Date shown water level nflow	SAMPLES & FIELD TESTS B Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("sample t Hammer Bouncing / Refus U50 Undisturbed Sample (75m VS Vane Shear; peak/remoud PT Push Tube MC Moisture Content	al m dia) m dia)	MOIST D M W PL	Base Bassific	escr d on U cation	SYMBOL IPTION inified System	.s &	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard Fb - Friable VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
See Explar details of a & basis of o	bbreviati	ons						SMEC AUSTRA	LIA	_					SME

PROJECT: McGregor Road Automotive Destination


HOLE NO : BH04 PROJECT NUMBER: 30041864

SHEET: 1 OF 2

FINAL DEPTH: 9.95 m POSITION : E: 365132.0, N: 5781966.0 (MGA94 Zone 55) SURFACE ELEVATION: 16.20 (m AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Podium 1

LOCATION: Pakenham

SMEC AUSTRALIA

SMEC

PROJECT: McGregor Road Automotive Destination

CLIENT : Podium 1 LOCATION : Pakenham

HOLE NO : BH04 PROJECT NUMBER : 30041864

SHEET: 2 OF 2 FINAL DEPTH : 9.95 m

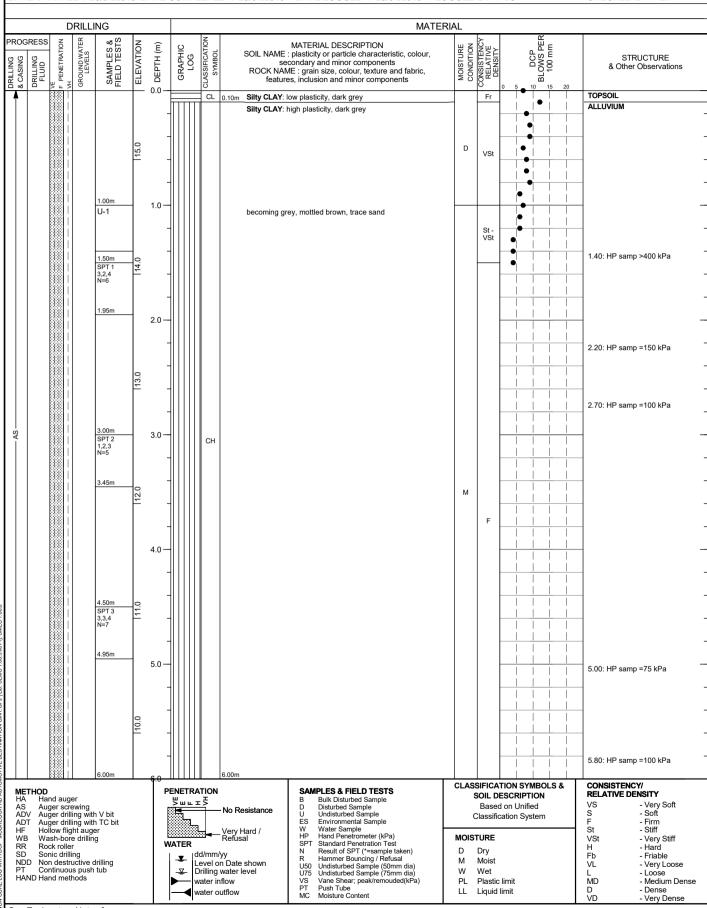
POSITION : E: 365132.0, N: 5781966.0 (MGA94 Zone 55) SURFACE ELEVATION: 16.20 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: Drill Rig MOUNTING : track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

DATE STARTED: 23/01/2019 DATE	COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LC	OGGED BY: SC	CHECKED BY: ZW
DRILLING	MATER		
DRILLING R. CASING R. CASING R. CASING DRILLING SWAP F PENETRATION WH GROUND WATER LEVELS SAMPLES & FIELD TESTS ELEVATION B DEPTH (m)	D H D J D W SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components	MOSTURE CONDITION CONSISTENCY RELATIVE DENSITY G DCP BLOWS PER	STRUCTURE & Other Observations
6.0 — 6.0 —	Silty CLAY: high plasticity, dark grey, with fine to coarse grained sand (continued) becoming brown, mottled grey CH	St-VSt	ALLUVIUM
8.00m SPT 5 9.10.11 0.8 8.45m 9.0 -	8.00m Clayey SILT: low plasticity, grey, mottled brown, with fine to medium grained sand ML 9.50m	VSt	
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods See Explanatory Notes for details of abbreviations See Explanatory Notes for details of abbreviations	Silty SAND: medium to coarse grained, grey, mottled brown, low plasticity silt SM 9.95m Hole Terminated at 9.95 m Target Depth	W MD - D	
METHOD HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods	SAMPLES & FIELD TESTS Bulk Disturbed Sample Undisturbed Sample Water Sample Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("-sample taken) Result of SPT ("-sample taken) N Result of SPT ("-sample taken) N Result of SPT ("-sample taken) N Hammer Bouncing' Refusal Undisturbed Sample (50mm dia) Undisturbed Sample (75mm dia) VS Vane Shear; peak/remouded(kPa) PT Push Tube MC Moisture Content	CLASSIFICATION SYMBOLS & SOIL DESCRIPTION Based on Unified Classification System MOISTURE D Dry M Moist W Wet PL Plastic limit LL Liquid limit	CONSISTENCY RELATIVE DENSITY
See Explanatory Notes for details of abbreviations & basis of descriptions.	SMEC AUSTRALIA		SMEC

PROJECT: McGregor Road Automotive Destination


HOLE NO : BH05 PROJECT NUMBER: 30041864

SHEET: 1 OF 4

FINAL DEPTH: 19.6 m POSITION : E: 365008.0, N: 5781914.0 (MGA94 Zone 55) SURFACE ELEVATION: 15.60 (m AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT

: Podium 1

LOCATION: Pakenham

SMEC AUSTRALIA

SMEC

PROJECT: McGregor Road Automotive Destination

CLIENT : Podium 1 LOCATION : Pakenham

HOLE NO : BH05 PROJECT NUMBER : 30041864

SHEET: 2 OF 4 FINAL DEPTH : 19.6 m

POSITION : E: 365008.0, N: 5781914.0 (MGA94 Zone 55) SURFACE ELEVATION: 15.60 (m AHD) INCLINATION° / ORIENTATION°: 90° / N/A

RIG TYPE: Drill Rig MOUNTING : track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

Section Sect		DRILLING	3				MA	TERIA	\L			
Silty CLAY high plasticity, grey, motified brown, trace fine grained sand To Clayer Silt. It low plasticity, pale grey, motified white To Silty CLAY high plasticity, grey, motified brown, trace fine grained white Clayer Silt. It low plasticity, pale grey, motified white To Silty CLAY high plasticity, grey, motified brown, trace fine grained white Clayer Silt. It low plasticity, pale grey, motified white To Silty CLAY high plasticity, grey, motified brown, trace fine grained white To Silty CLAY high plasticity, grey, motified brown, trace fine grained white To Silty CLAY high plasticity, grey, motified brown, trace fine grained white To Silty CLAY high plasticity, grey, motified brown, trace fine grained white	A CASING BOOD BOULLING BOOD BOULLING BOOD BOULLING BOOD BOOD BOOD BOOD BOOD BOOD BOOD BOO	GROUND WATER	SAMPLES & FIELD TESTS ELEVATION	l l	CLASSIFICATION SYMBOL	se ROCK NAI	: plasticity or particle characteristic, colour econdary and minor components ME : grain size, colour, texture and fabric,	-,	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	DCP BLOWS PER 100 mm	STRUCTURE & Other Observations
Clayey SiLT. low plasticity, pale grey, motified white		SP 3,4 N=	T 4 .8 .112 .55m	-	СН	grained san		ne				ALLUVIUM
10.0 — with fine to coarse grained sand, trace fine grained gravel	AS	7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0m	8.0			: low plasticity, pale grey, mottled white		D	· VSt		
METHOD PENETRATION SAMPLES & FIFT D. TESTS CLASSIFICATION SYMBOLS & CONSISTENCY/	- WB	SP 8.1. N=: 10.	50m 7 7 0,14 24 95m			11.50m Silty CLAY:	low to medium plasticity, brown, mottled gr	Э У	М			
HA Hand auger AS Auger screwing ADV Auger drilling with V bit ADT Auger drilling with TC bit HF Hollow flight auger WB Wash-bore drilling RR Rock roller SD Sonic drilling NDD Non destructive drilling PT Continuous push tub HAND Hand methods Water outflow Water outflow Water outflow Water outflow Water outflow SB Bulk Disturbed Sample D Disturbed Sample U Undisturbed Sample ES Environmental Sample ES Environmental Sample U Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("sample taken) R Hammer Bouncing / Refusal U50 Undisturbed Sample U Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("sample taken) R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm dia) U50 Und	METHOD HA Hand a AS Auger a ADV Auger a ADT Auger a HF Hollow WB Wash-t RR Rock rr SD Sonic d NDD Non de PT Continu HAND Hand m	luger screwing drilling with V drilling with TC flight auger sore drilling oller frilling structive drilling uous push tub nethods	bit C bit	WATER	dd/mm/y Level on Drilling w	Very Hard / Refusal y Date shown vater level low	D Disturbed Sample U Undisturbed Sample ES Environmental Sample W Water Sample HP Hand Penetrometer (kPa) SPT Standard Penetration Test N Result of SPT ("*sample taken) R Hammer Bouncing / Refusal U50 Undisturbed Sample (50mm dia) U75 Undisturbed Sample (75mm dia) VS Vane Shaar; peak/remouded(kPa) PT Push Tube		MOIST D M W PL	Base Classification of the Classification of	ESCRIPTION d on Unified cation System	RELATIVE DENSITY VS

PROJECT: McGregor Road Automotive Destination

HOLE NO : BH05 PROJECT NUMBER : 30041864

PROJECT NUMBER: 3004186 SHEET: 3 OF 4 FINAL DEPTH: 19.6 m

POSITION : E: 365008.0, N: 5781914.0 (MGA94 Zone 55) SURFACE ELEVATION : 15.60 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE : Drill Rig MOUNTING : track CONTRACTOR : Apex HOLE DIA : 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

	WILLE	. 23/01/20	10 L	J/ (L	JOIVII LLTL	ED : 23/01/2019 DATE LOGGED : 23/01/2019 LOG	GGED	ы.	30	CHECKED BY: ZW
	DR	ILLING				MATERI				
DRILLING & CASING DRILLING FLUID	VE F PENETRATION VH	SAMPLES & FIELD TESTS	ELEVATION	DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components	MOISTURE	CONSISTENCY RELATIVE DENSITY	DCP 10 DCP 15 100 mm	STRUCTURE & Other Observations
		SPT 8 10,13,15 N=28		- 12.0 - -	CL-CI	Silty CLAY: low to medium plasticity, brown, mottled grey and white, with fine to coarse grained sand, trace fine gravel (continued)	М	VSt		ALLUVIUM
		13.50m	[3.0	- 13.0 — -	SP	SAND: medium to coarse grained, brown, with fines	w	MD		
		SPT 9 12,17,24 N=41 13.95m	1.0 12.0	- 14.0 — -		Silty CLAY: low to medium plasticity, brown, mottled grey, with fine to coarse grained sand, with fine gravel				RESIDUAL SOIL
- WB		15.00m SPT 10 12.33,20@ N=HB	0:0	- - -	CL-Cl	l becoming brown, mottled grey and dark grey	м	н		-
GPJ Lb: SEMC 1.06 & lib Pt; SMEC 1.06 0		16.50m SPT 11 20.31@12i N=R 16.95m	0.1-1-1	16.0 —	CL-Cl	16.50m Gravelly CLAY: low to medium plasticity, brown, mottled grey, fine, angular gravel, with fine to coarse grained sand				
AS AUG ADV AUG ADV AUG ADV AUG ADV AUG	ger drilling llow flight ish-bore o ck roller nic drilling n destruct ntinuous p	rilling ive drilling oush tub	1-2.0			B Bulk Disturbed Sample Disturbed Sample U Undisturbed Sample ES Environmental Sample ES Environmental Sample W Water Sample HP Hand Penetroneter (kPa) SPT Standard Penetration Test N Result of SPT ("=sample taken) Result of SPT ("=sample taken) U50 Undisturbed Sample (50mm dia) U75 Undisturbed Sample (75mm dia)	MOIST MOIST M	Based Bassific	TION SYMBOLS & ESCRIPTION d on Unified cation System	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard Fb - Friable VL - Very Loose L - Loose MD - Medium Dense D - Dense

See Explanatory Notes for details of abbreviations & basis of descriptions.

CLIENT : Podium 1 LOCATION : Pakenham

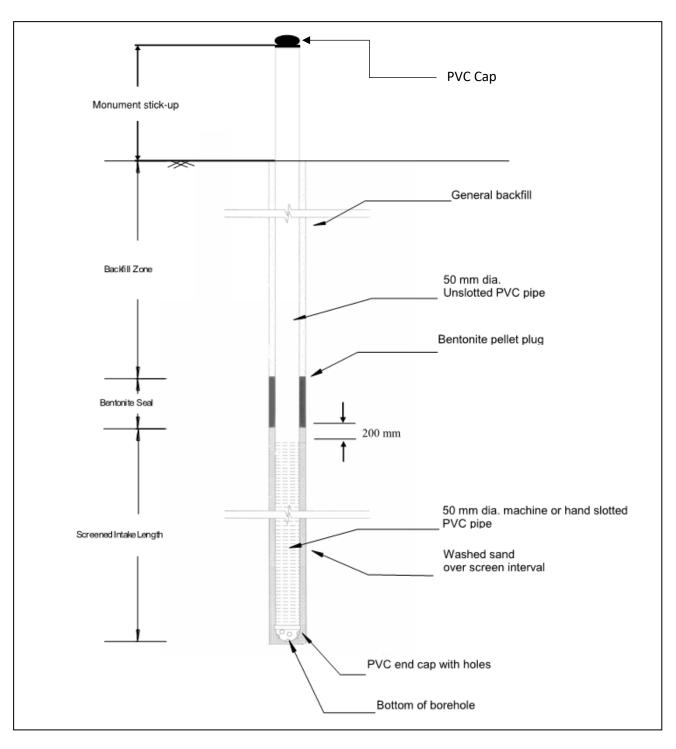
SMEC AUSTRALIA

SMEC

PROJECT: McGregor Road Automotive Destination

HOLE NO : BH05 PROJECT NUMBER : 30041864

SHEET: 4 OF 4
FINAL DEPTH: 19.6 m


POSITION : E: 365008.0, N: 5781914.0 (MGA94 Zone 55) SURFACE ELEVATION : 15.60 (m AHD) INCLINATION° / ORIENTATION° : 90° / N/A

RIG TYPE: Drill Rig MOUNTING: track CONTRACTOR: Apex HOLE DIA: 100 mm

DATE STARTED: 23/01/2019 DATE COMPLETED: 23/01/2019 DATE LOGGED: 23/01/2019 LOGGED BY: SC CHECKED BY: ZW

D, (i)	_ 017					,,,,,			. 23/01/2018	<i>D</i> , (12 200	OLD . 25/01/2019			. וט				OFFICER	.DD1 . ZVV
PROGR	DESS		RILLI		7			z				ATERI/		>		E.		1	
_	RILLING	VE F PENETRATION VH	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	ELEVATION	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION	SOIL NAME s ROCK NA featu	econdary and mir ME : grain size, c	ticle characteristic, colou		MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	0 5	BLOWS PER	5 20		STRUCTURE her Observations
DF WB 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0		3 - 5	Ö	9 II SPT 12 N=45 18.45m 19.50m SPT 13 22@/5mm N=R	14.0	18.0 —		СН	Sity CLAY coarse grain with fine, and 19,60m	high plasticity, br ned sand, trace fir ngular gravel	own, mottled grey, with fir	ne to	D	Н			5 20	RESIDUAL	SOIL
					0.9-														-
	HOD				-8.0	23.0 —	ENETR	ATION			FIELD TESTS					SYMBOLIBITION	.5 &	CONSISTE	
AS ADV ADT HF WB NDD NDD NDD NDD NDD NDD NDD NDD NDD ND	Han Aug / Aug Holle Was Roc Son O Non Con ID Han	er drill ow flig sh-bor k rolle ic drilli destri tinuou d metl	ewing ing with auge drillin r ing uctive constitution of the const	n TC bit er g Irilling tub			Mater ✓	dd/mm. Level o	Very Hard / Refusal /yy in Date shown water level	B Bulk Dis D Disturbe U Undistur ES Environ W Water S HP Hand Pe SPT Standan N Result o R Hamme U50 Undistur V5 Vane Si PT Push Tu	turbed Sample d Sample bed Sample mental Sample ample netrouser (kPa) 1 Fenetration Test 1 SPT ("=sample taken) Bouncing / Refusal bed Sample (50mm dia) bed Sample (75mm dia) ear; peak/remouded(kPa)		MOIS D M W PL	Based	d on Ucation	IPTION nified System		VS S F St VSt H Fb VL L MD D VD	- Very Soft - Soft - Soft - Firm - Stiff - Very Stiff - Hard - Friable - Very Loose - Loose - Medium Dense - Dense - Very Dense

CLIENT : Podium 1 LOCATION : Pakenham

As Constructed	Depth Interval (m)	Below Surface	Ground Surface RL	
BORE	From	То	15.6 m AHD	
Monument stick-up	-0.75	0		
Backfill zone	0	5.5		Note: Standpipe installed as a
Bentonite seal	5.5	6.5		monument
Unslotted PVC section	0	8		
Washed sand backfill	6.5	20		
Screened intake section	8	14		
Borehole toe level		20		

BH05 STANDPIPE CONSTRUCTION DETAILS

Project:
McGregor Rd Automotive Destination –
Geotechnical Investigation

Project No:
30041864
Revision: Rev0
Date: 30/01/2019
Prepared By: Stefan Chenoweth

PIT NO · **TP01 EXCAVATION - GEOLOGICAL LOG** PROJECT NUMBER: 30041864 CLIENT PROJECT: McGregor Road Automotive Destination : Podium 1 SHEET: 1 OF 1 LOCATION : Pakenham FINAL DEPTH: 2 m POSITION : E: 364358.0, N: 5781967.0 (MGA94 Zone 55) SURFACE ELEVATION: 14.80 (m AHD) EQUIPMENT TYPE: 5 tonne excavator METHOD: excavator bucket (500mm width) DATE EXCAVATED: 17/01/2019 LOGGED BY: SC CHECKED BY: ZW EXCAVATION DIMENSIONS: 3.00 m LONG 0.50 m WIDE **DRILLING** MATERIAL MATERIAL DESCRIPTION ONSISTENCY RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS MOISTURE CONDITION DEPTH (m) SUPPORT GRAPHIC SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components STRUCTURE & Other Observations P00 SYMBOL 0.0 TOPSOIL 0.00: long, dry wheat crops on surface No Silty CLAY: low plasticity, grey, with rootlets Encountered CL D ALLUVIUM Silty CLAY: high plasticity, dark grey, with fine to coarse grained sand, trace rootlets 0.17: DCP refusal at 0.17m 0.20: PP In-situ >400 kPa ξ .40m B-1 0.5 D 0.60: PP In-situ >400 kPa becoming grey, mottled brown and dark grey СН н 0.80: rootlets to 0.8m 1.00: PP In-situ >400 kPa 1.20: PP In-situ >400 kPa 1.40: PP In-situ =300 kPa Clayey SILT: high plasticity, brown, mottled grey, with medium to coarse grained sand 1.50m 1.5 М 1.50: PP In-situ =300 kPa МН VSt 1.70: PP In-situ =250 kPa 2.00: PP In-situ =200 kPa Hole Terminated at 2.00 m 2.5

METHOD

Natural Exposure Existing Excavation

PHOTOGRAPHS NOTES

RR Backhoe Bucket Bulldozer Blade В

Ripper FΧ Hydraulic Excavator EH Excavator with Hamme SUPPORT

PENETRATION No Resistance WATER 10 Oct., 73 Water Level on Date shown water inflow

water outflow

□ NO

3.0

YES YES

SAMPLES & FIELD TESTS

Undisturbed Sample D Disturbed Sample Bulk Disturbed Sample MC Moisture Content ΗP Hand Penetrometer (kPa) Vane Shear; P-Peak, VS

R-Remouded (uncorrected kPa) PBT Plate Bearing Test

CLASSIFICATION SYMBOLS & SOIL DESCRIPTION Based on Unified Classification System

MOISTURE Dry М Moist

W Wet CONSISTENCY/ RELATIVE DENSITY

Very Soft Soft S F St Firm Stiff VSt H VL Very Stiff Hard Very Loose Loose MD D Medium Dense Dense Very Dense VD

See Explanatory Notes for details of abbreviations & basis of descriptions.

Timbering

SMEC AUSTRALIA

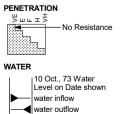
TP01 - 1 Depth Range: 0.00 m - 0.30m

TP01 - 2 Depth Range: 0.30m - 1.00m

DRAWN SC	21/01/2019
CHECKED ZW	21/01/2019
SCALE Not To S	Scale A4
PROJECT No 30041864	FIGURE No 1/2

TP01 - 3 Depth Range: 1.00m - 2.00m

TP01 - 4 Depth Range: 0.00m - 2.00m



DRAWN SC	21/01/2019
CHECKED ZW	21/01/2019
SCALE Not To S	Scale A4
PROJECT No 30041864	FIGURE No 2/2

PIT NO · **TP02 EXCAVATION - GEOLOGICAL LOG** PROJECT NUMBER: 30041864 CLIENT PROJECT: McGregor Road Automotive Destination : Podium 1 SHEET: 1 OF 1 LOCATION : Pakenham FINAL DEPTH: 2 m POSITION : E: 364417.0, N: 5781584.0 (MGA94 Zone 55) SURFACE ELEVATION: 13.60 (m AHD) EQUIPMENT TYPE: 5 tonne excavator METHOD: excavator bucket (500mm width) DATE EXCAVATED: 17/01/2019 LOGGED BY: SC CHECKED BY: ZW EXCAVATION DIMENSIONS: 3.00 m LONG 0.50 m WIDE **DRILLING** MATERIAL 3 PER mm MATERIAL DESCRIPTION ONSISTENCY RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS MOISTURE CONDITION DEPTH (m) SUPPORT GRAPHIC SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components STRUCTURE & Other Observations P00 SYMBOL 0.0 No Silty CLAY: low plasticity, dark grey, with rootlets TOPSOIL 0.00: tall grasses on surface Encountered CL 0.10m ALLUVIUM Silty CLAY: high plasticity, dark grey, trace sand, trace rootlets 0.20: PP In-situ >400 kPa ξ D н .40m B-1 0.5 0.50: PP In-situ >400 kPa 0.60: PP In-situ =400 kPa becoming brown, mottled grey and dark grey 0.80m 0.80: PP In-situ =350 kPa B-2 1.00: PP In-situ =300 kPa 1.00: rootlets to 1m becoming grey, mottled brown and dark grey СН VSt 1.20: PP In-situ =250 kPa М 1.5 1.50: PP In-situ =200 kPa 1.70: PP In-situ =150 kPa 2.00: PP In-situ =150 kPa Hole Terminated at 2.00 m 2.5 3.0 PHOTOGRAPHS NOTES YES □ NO CLASSIFICATION SYMBOLS & SOIL DESCRIPTION CONSISTENCY/ RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS METHOD ᄪᄪᄑᅗ Natural Exposure Based on Unified Very Soft Soft Undisturbed Sample No Resistance S F St Existing Excavation Classification System D Disturbed Sample

FΧ EH Excavator with Hamme SUPPORT Timbering

Bulk Disturbed Sample Moisture Content Hand Penetrometer (kPa) Vane Shear; P-Peak,

MC ΗP VS R-Remouded (uncorrected kPa) PBT Plate Bearing Test

MOISTURE Dry

М Moist W Wet

Firm Stiff VSt H VL Very Stiff Hard Very Loose Loose MD D Medium Dense Dense Very Dense VD

See Explanatory Notes for details of abbreviations & basis of descriptions.

TP02 - 1 Depth Range: 0.00m - 1.00m

TP02 - 2 Depth Range: 1.00m - 2.00m

DRAWN	21/01/2019
CHECKED ZW	21/01/2019
SCALE Not To S	Scale A4
PROJECT No 30041864	FIGURE No 1/2

TP02 - 3 Depth Range: 0.00m - 2.00m

SC SC	^{DATE} 21/01/2019	
CHECKED ZW	^{DATE} 21/01/2019	
Not To S	cale	A4
PROJECT No 30041864	FIGURE No 2/2	

PIT NO · **TP03 EXCAVATION - GEOLOGICAL LOG** PROJECT NUMBER: 30041864 CLIENT : Podium 1 PROJECT: McGregor Road Automotive Destination SHEET: 1 OF 1 LOCATION : Pakenham FINAL DEPTH: 2 m POSITION : E: 364725.0, N: 5782023.0 (MGA94 Zone 55) SURFACE ELEVATION: 15.80 (m AHD) EQUIPMENT TYPE: 5 tonne excavator METHOD: excavator bucket (500mm width) DATE EXCAVATED: 17/01/2019 LOGGED BY: SC CHECKED BY: ZW EXCAVATION DIMENSIONS: 3.00 m LONG 0.50 m WIDE **DRILLING** MATERIAL DCP BLOWS PEP 100 m SAMPLES & FIELD TESTS MATERIAL DESCRIPTION MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY PENETRATION DEPTH (m) GRAPHIC LOG SUPPORT SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components STRUCTURE & Other Observations SYMBOL 0.0 No TOPSOIL 0.00: long grasses on surface CLAY: low plasticity, brown, with rootlets Encountered CL ALLUVIUM Silty CLAY: high plasticity, dark grey, mottled brown, with fine to coarse grained sand, trace rootlets ξ 0.30: PP In-situ >400 kPa D /St 0.40: rootlets to 0.4m 0.5 0.60: PP In-situ >400 kPa 0.70: PP In-situ =350 kPa becoming brown, mottled grey and red 0.80m B-1 0.90: PP In-situ =300 kPa СН 1.20: PP In-situ =300 kPa VSt 1.5 1.50: PP In-situ =300 kPa 1.80: PP In-situ =200 kPa Hole Terminated at 2.00 m 2.5 3.0 PHOTOGRAPHS NOTES YES □ NO CLASSIFICATION SYMBOLS & SOIL DESCRIPTION CONSISTENCY/ RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS METHOD <u>шшт</u>= Natural Exposure Based on Unified Very Soft Soft Undisturbed Sample No Resistance S F St Existing Excavation Classification System D Disturbed Sample Firm Bulk Disturbed Sample RR Backhoe Bucket Stiff MOISTURE VSt H VL Bulldozer Blade Very Stiff Hard В MC Moisture Content ΗP Ripper Hand Penetrometer (kPa) WATER Dry Very Loose Loose FΧ Hydraulic Excavator Vane Shear; P-Peak, VS 10 Oct., 73 Water Level on Date shown Moist MD D EH Excavator with Hamme R-Remouded (uncorrected kPa) W Wet Medium Dense PBT SUPPORT water inflow Plate Bearing Test Dense Very Dense VD

Timbering

See Explanatory Notes for

details of abbreviations

& basis of descriptions.

water outflow

TP03 - 1 Depth Range: 0.00m - 0.30m

TP03 - 2 Depth Range: 0.30m - 0.70m

SC SC	21/01/2019				
CHECKED ZW	21/01/2019				
Not To S	Scale A4				
PROJECT No 30041864	FIGURE No 1/2				

TP03 - 3 Depth Range: 0.70m - 2.00m



TP03 - 4 Depth Range: 0.00m - 2.00m

DRAWN SC	DATE 21/01/2019				
CHECKED ZW	21/01/2019				
Not To S	Scale A4				
PROJECT No 30041864	FIGURE No 2/2				

PIT NO · **TP04 EXCAVATION - GEOLOGICAL LOG** PROJECT NUMBER: 30041864 CLIENT : Podium 1 PROJECT: McGregor Road Automotive Destination SHEET: 1 OF 1 LOCATION : Pakenham FINAL DEPTH: 2 m POSITION : E: 365050.0, N: 5781784.0 (MGA94 Zone 55) SURFACE ELEVATION: 15.00 (m AHD) EQUIPMENT TYPE: 5 tonne excavator METHOD: excavator bucket (500mm width) DATE EXCAVATED: 17/01/2019 LOGGED BY: SC CHECKED BY: ZW EXCAVATION DIMENSIONS: 3.00 m LONG 0.50 m WIDE **DRILLING** MATERIAL 3 PER mm MATERIAL DESCRIPTION MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS DEPTH (m) SUPPORT GRAPHIC SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components STRUCTURE & Other Observations P00 SYMBOL 0.0 No TOPSOIL 0.00: grazed grass on surface Silty CLAY: low plasticity, dark grey, with rootlets Encountered CL ALLUVIUM Silty CLAY: high plasticity, dark grey, with fine to coarse grained sand, trace rootlets 0.20: PP In-situ >400 kPa ğ D .30m B-1 Н 0.5 0.50: PP In-situ >400 kPa 0.50: rootlets to 0.5m becoming grey, mottled dark grey and brown 0.70m B-2 0.80: PP In-situ >400 kPa becoming brown, mottled pale grey and dark grey СН 1.20: PP In-situ =350 kPa М VSt 1.5 1.50: PP In-situ =350 kPa 1.80: PP In-situ =300 kPa 2.00: PP In-situ =300 kPa Hole Terminated at 2.00 m 2.5 3.0 PHOTOGRAPHS NOTES YES □ NO CLASSIFICATION SYMBOLS & SOIL DESCRIPTION CONSISTENCY/ RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS METHOD ᄪᄪᄑᅗ Natural Exposure Based on Unified Very Soft Soft Undisturbed Sample No Resistance S F St Existing Excavation Classification System D Disturbed Sample Firm RR Backhoe Bucket Bulk Disturbed Sample Stiff MOISTURE Bulldozer Blade Very Stiff Hard В MC Moisture Content ΗP Hand Penetrometer (kPa) Ripper WATER Dry

SUPPORT

10 Oct., 73 Water Level on Date shown water inflow water outflow

Vane Shear; P-Peak, VS R-Remouded (uncorrected kPa) PBT Plate Bearing Test

М Moist Wet

w

VSt H VL MD D

Very Loose Loose Medium Dense Dense Very Dense VD

See Explanatory Notes for details of abbreviations & basis of descriptions.

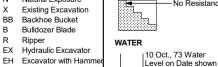
Timbering

TP04 - 1 Depth Range: 0.00m - 0.30m

TP04 - 2 Depth Range: 0.30m - 1.00m

DRAWN	DATE 21/01/2019				
CHECKED ZW	21/01/2019				
SCALE Not To S	Scale A4				
PROJECT No 30041864	FIGURE No 1/2				

TP04 - 3 Depth Range: 0.00 m



TP04 - 4 Depth Range: 0.00 m

DRAWN SC	21/01/2019				
CHECKED ZW	DATE 21/01/2019				
SCALE Not To S	Scale A				
PROJECT No 30041864	FIGURE No 2/2				

PIT NO · TP05 **EXCAVATION - GEOLOGICAL LOG** PROJECT NUMBER: 30041864 CLIENT PROJECT: McGregor Road Automotive Destination : Podium 1 SHEET: 1 OF 1 LOCATION : Pakenham FINAL DEPTH: 2 m POSITION : E: 364849.0, N: 5781594.0 (MGA94 Zone 55) SURFACE ELEVATION: 13.40 (m AHD) EQUIPMENT TYPE: 5 tonne excavator METHOD: excavator bucket (500mm width) DATE EXCAVATED: 17/01/2019 LOGGED BY: SC CHECKED BY: ZW EXCAVATION DIMENSIONS: 3.00 m LONG 0.50 m WIDE **DRILLING** MATERIAL s PEP mm MATERIAL DESCRIPTION ONSISTENCY RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS MOISTURE CONDITION DEPTH (m) SUPPORT GRAPHIC SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components STRUCTURE & Other Observations P00 SYMBOL 0.0 No TOPSOIL 0.00: grazed grass on surface Silty CLAY: low plasticity, dark grey, with rootlets Encountered CL D ALLUVIUM Sitty CLAY: high plasticity, dark grey, trace sand, trace fine gravel, trace rootlets 0.20: PP In-situ >400 kPa ξ D 0.50m 0.5 0.50: PP In-situ >400 kPa Н becoming grey, mottled brown and dark grey 0.80: PP In-situ >400 kPa 0.80: rootlets to 0.8m .00m 1.00: PP In-situ >400 kPa DS-1 becoming brown, mottled grey, dark grey and red СН 1.20: PP In-situ =350 kPa М 1.5 VSt 1.50: PP In-situ =350 kPa 1.80: PP In-situ =300 kPa 2.00: PP In-situ =300 kPa Hole Terminated at 2.00 m 2.5 3.0 PHOTOGRAPHS NOTES YES □ NO CLASSIFICATION SYMBOLS & SOIL DESCRIPTION CONSISTENCY/ RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS METHOD ᄪᄪᄑᅗ Natural Exposure Based on Unified Very Soft Soft Undisturbed Sample No Resistance S F St Existing Excavation Classification System D Disturbed Sample Firm Bulk Disturbed Sample RR Backhoe Bucket Stiff

water inflow

water outflow

MC Moisture Content ΗP Hand Penetrometer (kPa) Vane Shear; P-Peak, VS R-Remouded (uncorrected kPa) PBT Plate Bearing Test

MOISTURE Dry М Moist W Wet

VSt H VL Very Stiff Hard Very Loose Loose

MD D Medium Dense Dense Very Dense VD

See Explanatory Notes for details of abbreviations & basis of descriptions.

Timbering

SUPPORT

SMEC AUSTRALIA

TP05 - 1 Depth Range: 0.00 m

TP05 - 2 Depth Range: 0.00 m

DRAWN SC	DATE 21/01/2019				
CHECKED ZW	21/01/2019				
SCALE Not To S	Scale				
PROJECT No 30041864	FIGURE No 1/2				

TP05 - 3 Depth Range: 1.00m - 2.00m

TP05 - 4 Depth Range: 0.00m - 2.00m

DRAWN SC	DATE 21/01/2019				
CHECKED ZW	21/01/2019				
Not To S	Scale A4				
PROJECT No 30041864	FIGURE No 2/2				

PIT NO · **TP06 EXCAVATION - GEOLOGICAL LOG** PROJECT NUMBER: 30041864 CLIENT : Podium 1 PROJECT: McGregor Road Automotive Destination SHEET: 1 OF 1 LOCATION : Pakenham FINAL DEPTH: 2 m POSITION : E: 365162.0, N: 5781470.0 (MGA94 Zone 55) SURFACE ELEVATION: 13.80 (m AHD) EQUIPMENT TYPE: 5 tonne excavator METHOD: excavator bucket (500mm width) DATE EXCAVATED: 17/01/2019 LOGGED BY: SC CHECKED BY: ZW EXCAVATION DIMENSIONS: 3.00 m LONG 0.50 m WIDE **DRILLING** MATERIAL s PEP mm MATERIAL DESCRIPTION ONSISTENCY RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS MOISTURE CONDITION DEPTH (m) SUPPORT GRAPHIC SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components ROCK NAME: grain size, colour, texture and fabric, features, inclusion and minor components STRUCTURE & Other Observations P00 SYMBOL 0.0 No TOPSOIL 0.00: grazed grass on surface Silty CLAY: low plasticity, dark grey, with rootlets Encountered CL D ALLUVIUM Sandy CLAY: low to medium plasticity, dark grey, fine to coarse grained sand, trace rootlets ğ .30m 0.30: PP In-situ >400 kPa B-1 D 0.5 √St -0.60: PP In-situ >400 kPa Silty CLAY: medium to high plasticity, grey, mottled brown and dark brown, trace fine grained gravel 1.00: PP In-situ >400 kPa becoming brown, mottled pale grey, dark grey and red 1.20: PP In-situ =300 kPa VSt М 1.50m 1.5 1.50: PP In-situ =250 kPa 1.70: PP In-situ =150 kPa 1.90: PP In-situ =100 kPa Hole Terminated at 2.00 m 2.5 3.0 PHOTOGRAPHS NOTES YES □ NO CLASSIFICATION SYMBOLS & SOIL DESCRIPTION CONSISTENCY/ RELATIVE DENSITY PENETRATION SAMPLES & FIELD TESTS METHOD ᄪᄪᄑᅗ Natural Exposure Based on Unified Very Soft Soft Undisturbed Sample No Resistance S F St Existing Excavation Classification System D Disturbed Sample Firm RR Backhoe Bucket Bulk Disturbed Sample Stiff MOISTURE VSt H VL Bulldozer Blade Very Stiff Hard В MC Moisture Content ΗP Ripper Hand Penetrometer (kPa) WATER Dry Very Loose Loose FΧ Hydraulic Excavator Vane Shear; P-Peak, VS

See Explanatory Notes for details of abbreviations & basis of descriptions.

EH Excavator with Hamme

Timbering

SUPPORT

10 Oct., 73 Water Level on Date shown

water inflow

water outflow

SMEC AUSTRALIA

R-Remouded (uncorrected kPa)

Plate Bearing Test

PBT

М Moist

W Wet

SMEC

MD D

VD

Medium Dense

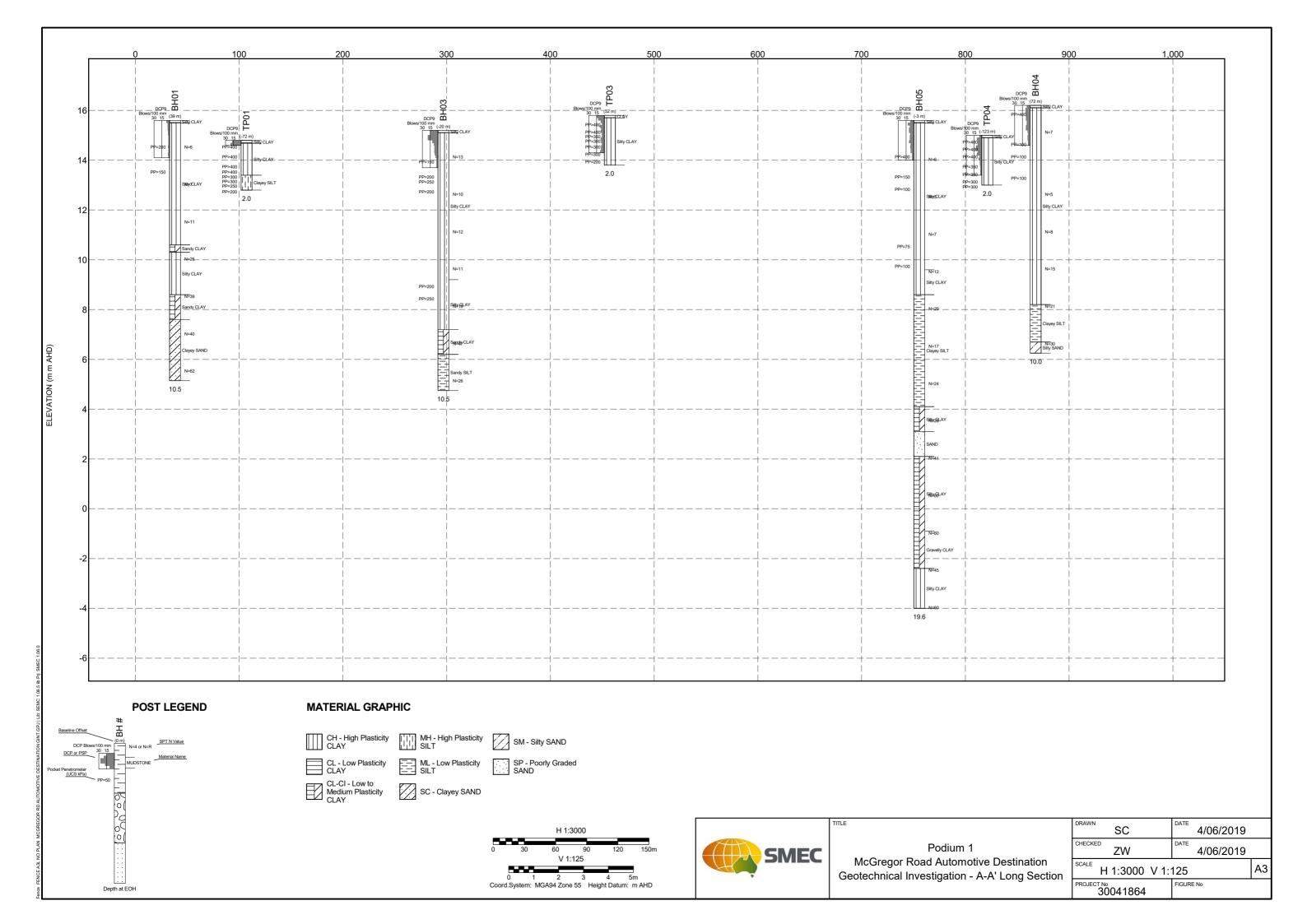
Dense Very Dense

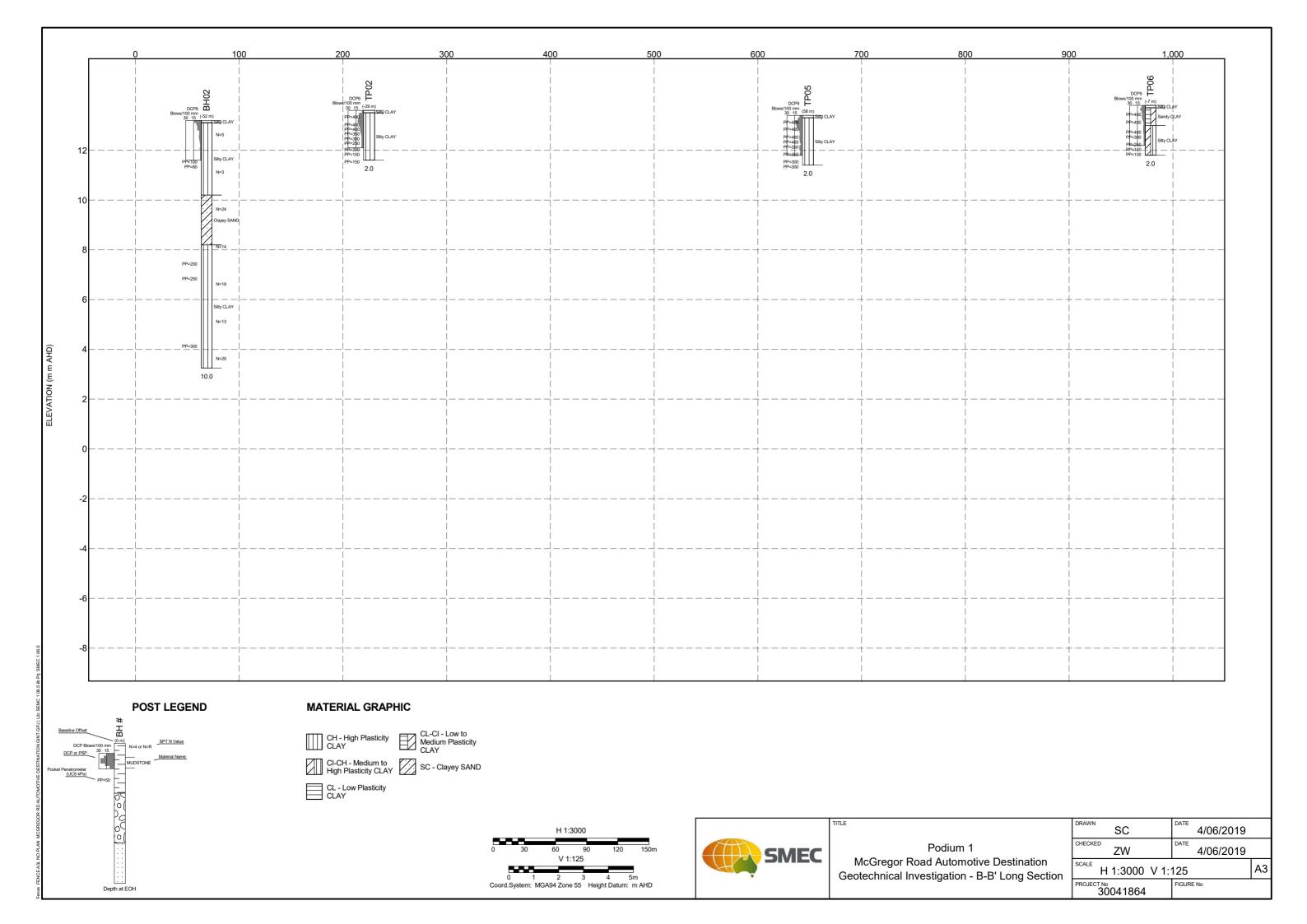
TP06 - 1 Depth Range: 0.00m - 0.30m

TP06 - 2 Depth Range: 0.30m - 1.00m

DRAWN	DATE 21/01/2019				
CHECKED ZW	21/01/2019				
SCALE Not To S	Scale A4				
PROJECT No 30041864	FIGURE No 1/2				

TP06 - 3 Depth Range: 1.00m - 2.00m




TP06 - 4 Depth Range: 0.00m - 2.00m

DRAWN	DATE 21/01/2019				
CHECKED ZW	21/01/2019				
SCALE Not To S	Scale A4				
PROJECT No 30041864	FIGURE No 2/2				

Appendix C Inferred Geological Sections

Appendix D Laboratory Results

Dandenong South ACN 143 009 330

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S19DS-00999/1

Issue No: 1

Material Test Report

Client:

Project:

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008 McGregor Road, Pakenham

Project No.: 1009508

Order No.: **CG Request No.:**

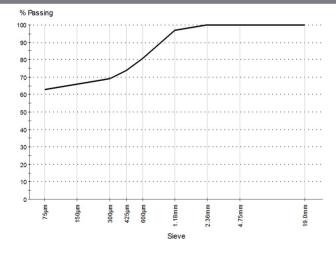
TRN: Lot No.: ilac-MR/

Accredited for compliance with ISO/IEC 17025 – Testing

12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) Date of Issue: 19/02/2019 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


Sample Location TP06, 0.3m to 0.5m

Field Sample ID

17/01/2019 **Date Sampled** Source In-Situ Material Silty Clay **Specification** AS Grading **Sampling Method** Submitted by client Sample ID S19DS-00999

Other Test Results Method Result Limits Description Moisture Content (%) AS 1289.2.1.1 Oven-dried Sample History AS 1289.1.1 Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 11.0 Mould Length (mm) 125 Crumbling No

Particle Size Distribution

AS	1	2	8	9	.3	6	. 1	۱

Drying by: Oven Date Tested: 6/02/2019

Note: Sample Wa	shed	
Sieve Size	% Passing	Limits
19.0mm	100	
4.75mm	100	
2.36mm	100	
1.18mm	97	
600µm	81	
425µm	74	
300µm	69	
150µm	66	
75µm	63	

Comments

N/A

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S19DS-00999/1

Material Test Report

Client:

Project:

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008 McGregor Road, Pakenham

Project No.: 1009508

Order No.: **CG Request No.:**

TRN: Lot No.:

Accredited for compliance with ISO/IEC 17025 – Testing

12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) 19/02/2019 Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Other Test Results

Description	Method	Result	Limits
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	34	
Plastic Limit (%)	AS 1289.3.2.1	13	
Plasticity Index (%)	AS 1289.3.3.1	21	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S19DS-01002/1

Accredited for compliance with ISO/IEC 17025 – Testing

Issue No: 1

Material Test Report

Client:

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008

Project: McGregor Road, Pakenham

Project No.: 1009508

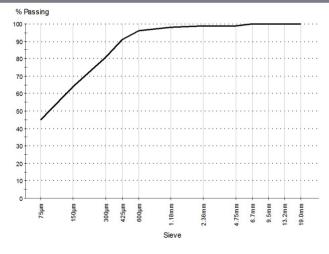
Order No.: **CG Request No.:**

TRN: Lot No.: ilac-MRA

12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) Date of Issue: 19/02/2019 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


Sample Location BH03, 10.0m to 10.45m

Field Sample ID

23/01/2019 **Date Sampled** Source In-Situ Material silty SAND **Specification** AS Grading **Sampling Method** Submitted by client Sample ID S19DS-01002

Other Test Results Description Result Limits Method Moisture Content (%) AS 1289.2.1.1 Oven-dried Sample History AS 1289.1.1 **Preparation** AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 2.5 Mould Length (mm) 250 Crumbling No

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven Date Tested: 7/02/2019

Note: Samp	ole Washed	
Sieve Size	% Passing	Limits
19.0mm	100	
13.2mm	100	
9.5mm	100	
6.7mm	100	
4.75mm	99	
2.36mm	99	
1.18mm	98	
600µm	96	
425µm	91	
300µm	81	
150µm	64	
75µm	45	

Comments

25 Metcalf Street
DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S19DS-01002/1

Issue No: 1

Material Test Report

Client: SMEC

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008

Project: McGregor Road, Pakenham

Project No.: 1009508

Order No.: CG Request No.:

TRN: Lot No.:

Accredited for compliance with ISO/IEC 17025 – Testing

ulls of the tests, calibrations and/or Approved Signatory: J. Lamont

cease in Judges in it is southers are considered. (Dandenong Laboratory Manager)

12712 Date of Issue: 19/02/2019

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Other Test Results

Description	Method	Result	Limits
Curling		No	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.2	19	
Plastic Limit (%)	AS 1289.3.2.1	13	
Plasticity Index (%)	AS 1289.3.3.1	6	

\sim	-	-	•	~+~	٠
C O	111	ш	е	nts	1

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S19DS-01003/1

Accredited for compliance with ISO/IEC 17025

— Testing

Issue No: 1

Material Test Report

Client:

Project:

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008 McGregor Road, Pakenham

Project No.: 1009508

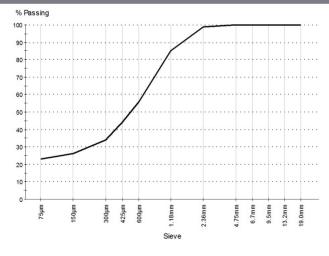
Order No.: **CG Request No.:**

TRN: Lot No.: ilac-MRA

12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) 19/02/2019 Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


Sample Location BH02, 3.5m to 3.95m

Field Sample ID

Date Sampled 23/01/2019 Source In-Situ Material Clayey Sand AS Grading **Specification** Submitted by client **Sampling Method** Sample ID S19DS-01003

Other Test Results			
Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	10.5	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	9.0	
Mould Length (mm)		125	
Crumbling		No	

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven **Date Tested:** 7/02/2019

Note: Sample Was	shed	
Sieve Size	% Passing	Limits
19.0mm	100	
13.2mm	100	
9.5mm	100	
6.7mm	100	
4.75mm	100	
2.36mm	99	
1.18mm	85	
600µm	56	
425µm	44	
300µm	34	
150µm	26	
75µm	23	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: MAT:S19DS-01003/1

Issue No: 1

Material Test Report

Client: **SMEC**

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008

Project: McGregor Road, Pakenham

Project No.: 1009508

Order No.: **CG Request No.:**

TRN: Lot No.:

Accredited for compliance with ISO/IEC 17025 – Testing

12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) 19/02/2019 Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Other	Tes	t R	esu	ılts
O (1101				1160

Description	Method	Result	Limits
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	36	
Plastic Limit (%)	AS 1289.3.2.1	13	
Plasticity Index (%)	AS 1289.3.3.1	23	

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

California Bearing Ratio Test Report

Client:

Project:

Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008 McGregor Road, Pakenham

Project No.: 1009508

CG Request No.: Order No.:

TRN: Lot No.:

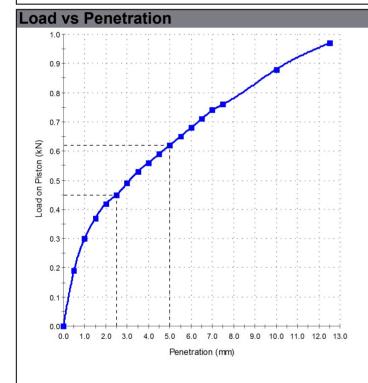
Report No: CBR:S19DS-00998

Accredited for compliance with ISO/IEC 17025

Issue No: 1

12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) Date of Issue: 19/02/2019 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL


Sample Details

Date Sampled: 17/01/2019 Sample ID: S19DS-00998

Sampled By: Material: Client

Location: TP01, 0.4m to 0.5m Tested By: C. Ranaraja

Date Tested: 11/02/2019

Test Results AS 1289.6.1.1 - 2014 CBR At 2.5mm (%): Maximum Dry Density (t/m3): 1.89 12.0 Optimum Moisture Content (%): Dry Density before Soaking (t/m3): 1.86 Density Ratio before Soaking (%): 98.0 Moisture Content before Soaking (%): 11.7 Moisture Ratio before Soaking (%): 98.0 Dry Density after Soaking (t/m3): 1.85 Density Ratio after Soaking (%): 98.0 Swell (%): 0.5 Moisture Content of Top 30mm (%): 15.4 Compactive Effort: Standard AS 1289.5.1.1 Surcharge Mass (kg): 4.50 Period of Soaking (Days): Oversize Material (%): CBR Moisture Content Method: AS 1289.2.1.1 Date/Time Cure Start: 01/02/2019 00:00 Date/Time Cure End: 07/ 02/ 2019 00:00

Comments

25 Metcalf Street DANDENONG SOUTH, VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 9706 9431

Report No: CBR:S19DS-00999

Accredited for compliance with ISO/IEC 17025

Issue No: 1

California Bearing Ratio Test Report

Client:

Project:

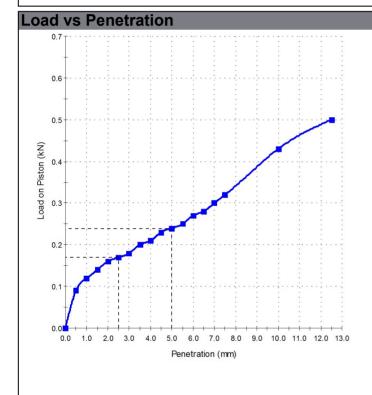
Address: Collins Square, Tower 4, Level 20, 727 Collins St

MELBOURNE VIC 3008 McGregor Road, Pakenham

Project No.: 1009508

CG Request No.: Order No.:

TRN: Lot No.: ilac MR/


12712

Approved Signatory: J. Lamont (Dandenong Laboratory Manager) Date of Issue: 19/02/2019 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Sample ID: S19DS-00999 Date Sampled: 17/01/2019 Sampled By: Material: Silty Clay Client Location: TP06, 0.3m to 0.5m Tested By: C. Ranaraja

Date Tested: 11/02/2019

Test Results AS 1289.6.1.1 - 2014 CBR At 2.5mm (%): 1.5 Maximum Dry Density (t/m3): 1.86 12.0 Optimum Moisture Content (%): Dry Density before Soaking (t/m3): 1.83 Density Ratio before Soaking (%): 98.0 Moisture Content before Soaking (%): 11.5 Moisture Ratio before Soaking (%): 97.5 Dry Density after Soaking (t/m3): 1.79 Density Ratio after Soaking (%): 96.5 Swell (%): 2.0 Moisture Content of Top 30mm (%): 17.8 Compactive Effort: Standard AS 1289.5.1.1 Surcharge Mass (kg): 4.50 Period of Soaking (Days): Oversize Material (%): CBR Moisture Content Method: AS 1289.2.1.1 Date/Time Cure Start: 05/02/2019 00:00 Date/Time Cure End: 07/ 02/ 2019 00:00

Comments

Head Office 25 Metcalf Street
DANDENONG SOUTH VIC 3175

Ph: +61 3 8796 7900 Fax: +61 3 8796 7944

SHRINK SWELL TEST REPORT

Customer: SMEC Australia Pty Ltd

Customer Address: Collins Square, Tower 4, Level 20, 727 Collins St, MELBOURNE Report Date: 15/02/2019 Project: McGregor Road CG Job No: 1009508 Location: Pakenham Test Method: AS1289.7.1.1 Page: 1 of 1

Customer Order No.: 30041864 Testing performed and reported at our Dandenong South Laboratory 12712

9	sometimed and repented at our Bandoneng	,,	
Sample No.:	S19DS-01000	S19DS-01001	
ID No:	3	4	
Lot No:	-	-	
Date Sampled	24/01/2019	24/01/2019	
Material Source:	In-Situ	In-Situ	
Sample Location:	BH04 2.5m to 2.86m	BH05 1.0m to 1.4m	
Material Description	Silty CLAY	Silty CLAY	
Sampling Procedure:	As Received	As Received	
SHRINK TEST AS1289 7.1.1 Clause 5.2			
Length of Specimen (mm)	126.6	126.8	
Mass of Specimen (g)	781.1	660.0	
Mass of Oven dried Specimen (g)	641.3	584.3	
Initial Moisture Content (w ₃) % AS1289 2.1.1	21.8	13.0	
extent of soil cracking	Nil	Minor	
extent of soil crumbling	Nil	Moderate	
Shrinkage %	4.5	1.6	
SWELL TEST AS1289 7.1.1 Clause 5.1			
Load Device No	25	25	
Height of specimen (mm)	20	20	
Initial Moisture Content (w ₁) % AS1289 2.1.1	23.4	15.9	
Final Moisture Content (w ₂) % AS1289 2.1.1	24.5	25.4	
Swell %	-0.8	1.3	
SHRINK SWELL INDEX (I _{ss}) %	2.3	1.2	
estimated inert inclusions (%)	5	5	

Remarks: For sample Id S19DS-01001, this sample was in a fractured condition prior to testing.

Accredited for compliance with ISO/IEC 17025. The results of tests, calibrations and/or measurements included in this document are traceable to

APPROVED SIGNATORY

Form No.: CG.332.003

Issue Date: 04/06/2018

Report Number: W19DS00262

SMEC Australia Pty Ltd Collins Square, Tower 4, Level 20, 727 Collins Street Melbourne VIC 3008

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Zach Wong

Report 638822-S

Project name MCGREGOR RD AUTOMOTIVE DESTINATION

Project ID 30041864
Received Date Feb 04, 2019

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH02-0.6M- 0.7M Soil M19-Fe03540 Jan 23, 2019	BH05-6.2-6.3I Soil M19-Fe03541 Jan 23, 2019	
Test/Reference	LOR	Unit			
Chloride	5	mg/kg	30	490	
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	86	320	
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.9	7.9	
Sulphate (as SO4)	30	mg/kg	37	81	
% Moisture	1	%	11	19	

Report Number: 638822-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Chloride	Testing Site Melbourne	Extracted Feb 07, 2019	Holding Time 28 Day
- Method: LTM-INO-4090 Chloride by Discrete Analyser		,	•
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Feb 07, 2019	7 Day
- Method: LTM-INO-4030 Conductivity	NA - Us - compa	F-1-07-0040	7.0
pH (1:5 Aqueous extract at 25°C as rec.) - Method: LTM-GEN-7090 pH in soil by ISE	Melbourne	Feb 07, 2019	7 Day
Sulphate (as SO4)	Melbourne	Feb 07, 2019	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
% Moisture	Melbourne	Feb 05, 2019	14 Day

Report Number: 638822-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: SMEC Australia Pty Ltd (VIC)

Address: Collins Square, Tower 4, Level 20, 727 Collins Street

Melbourne VIC 3008

Project Name: MCGREGOR RD AUTOMOTIVE DESTINATION

Project ID: 30041864

 Order No.:
 Received:
 Feb 4, 2019 4:30 PM

 Report #:
 638822
 Due:
 Feb 11, 2019

 Report #:
 638822
 Due:
 Feb 11, 201

 Phone:
 03 9514 1500
 Priority:
 5 Day

 Fax:
 03 9514 1502
 Contact Name:
 Zach Wong

Eurofins | mgt Analytical Services Manager : Cindi Guo

Sample Detail					Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Χ	Х	Χ	Χ	Х
Sydr	ney Laboratory	- NATA Site # 1	8217							
	pane Laboratory									
	n Laboratory - N		36							
Exte	rnal Laboratory	1		Г	1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH02-0.6M- 0.7M	Jan 23, 2019		Soil	M19-Fe03540	Χ	Х	Х	Х	х
2	BH05-6.2- 6.3M	Jan 23, 2019		Soil	M19-Fe03541	Х	Х	Х	Х	х
Test	Counts					2	2	2	2	2

Eurofins | mgt 6 Monterey Road, Dandenong South, Victoria, Australia 3175

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 638822-S

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Conductivity (1:5 aqueous extract at 25°C as rec.)			uS/cm	< 10			10	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	M19-Fe02253	NCP	%	107			70-130	Pass	
Sulphate (as SO4)	M19-Fe02243	NCP	%	70			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
_				Result 1	Result 2	RPD			
Chloride	M19-Fe02262	NCP	mg/kg	76	61	23	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	M19-Fe03649	NCP	uS/cm	210	210	<1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	M19-Fe03649	NCP	pH Units	7.4	7.4	pass	30%	Pass	
166.)									
Sulphate (as SO4)	M19-Fe02242	NCP	mg/kg	44	42	4.0	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 No

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Cindi Guo Analytical Services Manager
Julie Kay Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgl be liable for consequential clamps including, but not limited to, idea profits, damages for eladerines and so the production arising from this report. This document shall be reported used except in full and retales only to the tiens tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 638822-S

local people global experience

SMEC is recognised for providing technical excellence and consultancy expertise in urban, infrastructure and management advisory. From concept to completion, our core service offering covers the life-cycle of a project and maximises value to our clients and communities. We align global expertise with local knowledge and state-of-the-art processes and systems to deliver innovative solutions to a range of industry sectors.